首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

使用集成示波器,执行五项常见调试任务

使用集成示波器,执行五项常见调试任务

使用集成示波器,让五项常见调试任务更高效

随着复杂性不断上升,实践证明,现代混合信号设计与设计人员可谓棋逢对手。嵌入式设计工程师必须戴几顶帽子,才能高效地诊断和调试最新设计。这意味着他们需要处理下述活动:设计电源,测量功率效率,在设计中采用无线电,或必须追踪可能威胁预计操作的噪声来源。

而且,调试当今设计要求在混合域环境中工作,从DC到RF,包括模拟信号和数字信号、串行总线和并行总线。在不太遥远的过去,这曾要求满满一工作台的仪器,每台仪器都有自己的接口和设置要求。

但是,正如嵌入式测试要求正在变化一样,测试仪器也在变化,最明显的是集成示波器的出现。在示波器用户调查中,我们发现,除他们的示波器外,工程师报告称,他们每个月需要多次使用下面的仪器:

●数字电压表87%

●函数发生器68%

●频谱分析仪45%

●逻辑分析仪33%

●协议分析仪15%

这表明示波器–大多数设计工作台的核心仪器–必需为设计人员提供一套更完善的功能和特性,支持高效检验和调试嵌入式设计。为满足这一需求,测试设备制造商现在开始提供集成示波器,把多台仪器融合到一个小型便携式包装中,并能够同时查看时域信息和频域信息。

市场上最新的集成示波器之一是泰克MDO3000 (图1),它同时融合六台仪器,包括业内唯一内置到示波器中的独立RF采集系统。其他功能包括逻辑分析仪、协议分析仪、任意函数发生器和数字电压表(DVM)。而这样一台仪器在实践中怎样工作呢?它真能替代多台独立仪器吗?为了尝试回答这些问题,我们使用这台全新集成示波器完成下面五项常见任务,包括:

1.查找异常信号

2.检验串行和并行总线设计

3.搜索噪声源

4.使用带噪声的信号进行余量测试

5.验证开关电源设计

一如既往,您获得的好处可能会根据需求和要求变化–一定要仔细查看技术数据表,并与预计应用进行对比。而随着价格下降,达到“标准”数字示波器的水平,同时随着无线技术在嵌入式系统中普及,安全地说,集成示波器在这里可以清楚地代表示波器发展的未来。



图1.泰克MDO3000系列集成示波器在一个便携式包装中提供了六台仪器。


User interface selectable in 11 languages:用户界面有11种语言可供选择

9‘’display: 9‘’显示器

Protocol decode application modules:协议解码和应用模块

Dedicated spectrum analyzer functions true RF N connectors:专用频谱分析仪功能和真正RF N连接器

16 digital channels: 16条数字通道

Arbitrary Function Generator:任意函数发生器

Oscilloscope and DVM inputs:示波器和DVM输入

查找异常信号

发现和捕获异常信号可能是调试过程中最困难的挑战之一。仅一个信号上微弱的或偶尔发生的异常事件,都可能会直接决定设计能否可靠运行。

通常情况下,在探测电路板上的信号时,在波形上偶尔会看到微弱的光迹,表明偶尔出现的、非预计的事件,其看上去和数字信号不同。使用辉度等级显示技术,可以帮助确认信号上存在偶发异常事件,但它们从屏幕上消失得太快,测量不到。尽管无限余辉在查看单个信号时会有一定的帮助,但它不能兼容快速探测电路板。

为在探测设计时发现异常信号,并了解异常事件发生的频次,我们启用了示波器的颜色等级快速采集模式。这种采集模式把波形采集速度提高到每秒超过280,000个波形,这一速度足以捕获任何异常事件。如图2所示,温度显示技术用红色表示发生最频繁的信号,用蓝色表示发生最不频繁的信号。在这个3.3 V数字信号中,可以看到偶尔出现的窄脉冲或毛刺。低幅度欠幅脉冲略高于1 V,也出现在蓝色中。下一步,我们使用欠幅脉冲触发,隔离和捕获每个欠幅脉冲。



图2: FastAcq使用温度显示捕获异常信号。


但欠幅脉冲发生的频次是多少呢?前面板控件可以进入手动和自动波形导航工具,拥有卷动和缩放之类的功能,可以检查长采集数据。但是,手动导航长信号采集可能会非常繁琐,而且容易出错。在手动滚动数百万个数据点时,可能会漏掉关心的事件。在手动导航信号时,用户怎样能确信找到事件发生的所有位置呢?

解决方案是自动搜索信号,查找指定事件的所有时点。指定搜索事件与指定触发事件的方式类似。然后,示波器将自动标记每个事件,用户可以使用前面板箭头键在标记之间移动,找到事件。

在这种情况下,欠幅脉冲触发设置被复制到自动搜索设置中,我们发现采集信号中有三个欠幅脉冲,之间大约相距3.25 ms.有了这些信息以后,用户可以关联以这种速度发生的事件,隔离异常信号的成因。
返回列表