首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 基于MCU+CPLD的相位差和频率的测量方法研究及实现
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于MCU+CPLD的相位差和频率的测量方法研究及实现
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2014-12-2 20:41
|
只看该作者
基于MCU+CPLD的相位差和频率的测量方法研究及实现
单片机
,
相位差
,
在线
,
测量
,
技术
1 引言
相位检测是电力系统自动控制和谐波分析与控制的关键技术。传统的相位测量是利用过零电路把输入的两路信号(电压或电流)转换为方波信号,再利用逻辑电路和单片机技术对信号某一特殊区段计数和数学变换,求得相位差。随着可编程器件(FPGA,CPLD)的快速发展,目前采用以MCU+FPGA/CPLD为核心的设计理念。这种混合设汁方案利用CPLD在线修改的特点,实现各种复杂数字逻辑设计,结合单片机的控制功能。简化数字电路系统设计,大大缩短系统研制开发周期。本文采用MCU+CPLD设计方法,测量两路信号的相对宽度,充分利用CPLD速度快,单片机控制和数据处理能力强的优势,完成频率和相位差的测量和显示,大大简化了硬件电路,并提高了测量精度和抗干扰能力。
2频率和相位测量原理
频率测量可先测周期T,然后根据公式f=1/T算出频率,这种方法为间接测量。根据测频的误差分析,在f较低场合,f越低T越大。计数器得数N也越大,±1误差对测量结果的影响减小。具体实现方法是被测信号(正弦)经整形电路后成为方波,用于控制主门的通断,在此期间(一个周期T)外部时标信号TS通过主门,用计数器累计时标脉冲个数。被测信号周期T=NTS,其中TS为时标脉冲周期,N为被测信号一个周期之内累计时的标脉冲个数。相位差△φ对应的时间=N1TS,则△φ=(△T/T)×360°。图1给出f、△φ测量系统框图。
两个频率相同而相位不同的正弦信号u1=Asinwt和u2=Asinw (t+△T)分别送人比较器整形后得到两个方波信号X1、X2。其中X2送入双D触发器的1CLK端,得到图2中的QB波形;同理,利用X1可得到QA波形。最后将QB和QA送人与门74LS11,QB×QA相与得到时间差脉冲△T,△T与相位差对应(△φ=w△T)。
3硬件电路设计
MCU与CPLD控制模块连接如图3所示,MCU采用8位单片机AT89C51,CPLD选用Altera公司MAX7000S系列中的EPM7128SLC84-15,该器件一共有84个引脚,68个I/O端口,采用EEPROM技术,内含2500个逻辑门,128个宏单元。图3中CPLD模块的×1、×2为整形后的被测信号输入端,inclk为外部时标信号输入端,t0、t1端分别与单片机的定时/计数器T0,T1相连,采用单片机内部16位定时/计数器,加上CPLD模块内的8位计数器,可使计数器位数达到24位,以此提高分辨率。P25与读信号RD、P26与RD分别控制两个锁存器74373的数据读取,此外P24、P15、P16分别控制相位和周期的测量。P27与写信号WR控制写显示器,P10、P11、P12、P13、P14用于键盘和显示的控制。单片机P0端口用于从CPLD读取8位计数器数据,另外还用于向显示器写显示数据。
4软件设计
4.1 CPLD控制模块设计
CPLD控制模块的底层没计如图4所示,CPLD控制程序中的变量P2.4、p1.5、×1、×2、p2_6、rd、p2_7、wr的数据类型为IN STD_LOGIC;变量p1_6、t0、t1、o1、pout的数据类型为OUT STD_LOGIC;中间变量有f2、f1、j1、j2、q1,q2,其中f2、f1分别与图2中的波形QA、QB表示的端口一致;j1、j2的数据类型std_logic_vector,分别代表图4中两个8位计数器74393的输出;q1,q2分别表示与门7403、7411的输出。根据频率、相位测量原理,测量部分将由CPLD完成,测量结果经单片机运算后存LED上显示。由CPLD完成的相位测量部分程序以下给出相关程序代码。
4.2 MCU程序设计
系统控制软件采用C语言和汇编语言混合编写,采用模块化设计,各个功能子模块独立。整个软件分为主程序、频率测量子程序、相位差测量子程序。图5为相位差测量子程序流程图。
5 CPLD仿真
系统CPLD仿真波形如图6所示,在×1、×2端输入周期T=40μs、相位差△φ=135°的两路被测信号,osc端为5 MHz的输入时标信号。本系统设计实现f、△φ测量,首先要是准确判断出被测信号的一个周期的起始与结束,因此采用单片机P16、P24来完成周期判断。
结合图4的CPLD设计的底层图和图6的CPLD仿真波形分析如下:首先P24=0。使下面的双D触发器清零,即1Q=2Q=0,而且P15=1对两个计数器74393清零,等待计数。P24由0→1后,当被测信号×2上升沿到来时1Q翻转,1Q=1,打开与门7411和7408,允许时标脉冲计数,此时2Q仍为0;当被测信号×2第二次上升沿到来时1Q再次翻转,1Q=0,同时2Q也翻转,2Q=1。此时单片机查询到P16=1,完成一个周期的检测。然后使P24=0,关闭与门7411和7408,停止计数。
计数完毕后,当P25为低电平且RD下降沿到来时,单片机读取第一个锁存器74373的数据为[q28…q211]=01001011;当P26为低电平且RD下降沿到来时,单片机读取第二个锁存器74373的数据为[q28…q21]=11000111,则△φ=(01001011/11000111)x360°=(75/199)×360°=135°。可见波形仿真验证了系统设计的正确性。
6结语
本文给出了一种采用CPLD器件EPM7128SLC84215实现相位差智能化测量仪的方案。整个系统充分利用单片机CPLD可编程逻辑器件各自的优势,只需少量的外围电路,即可有效测量正弦波、方波、三角波信号的相位差,硬件电路简单,精度高,抗干扰能力强,性能指标良好。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议