首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 智能电阻电容电感测量仪的设计与开发
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
智能电阻电容电感测量仪的设计与开发
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2014-12-17 19:49
|
只看该作者
智能电阻电容电感测量仪的设计与开发
测量仪
,
经典的
,
开发
,
智能
,
平衡
0 引言
目前有三种实现RLC测量的方法。1)电桥法,它具有较高的测量精度,被广泛采用,现己派生出许多类型。但电桥法测量需要反复进行平衡调节,测量时间长,很难实现快速的自动测量。2)谐振法,它要求较高频率的激励信号,一般不容易满足高精度的要求。由于测试频率不固定,测试速度也很难提高。3)伏安法,它是最经典的方法,其测量原理来源于阻抗的定义,显然纯电阻可由直流分压,但对于阻抗、容抗则必须采用频率较高的交流,电路较为复杂,使得该方案未得到认可。本系统采用伏安法,相对简化了电路,具有较好的人机互动。
1 系统方案实现
整体设计思想为在待测网络器一端加入激励信号,另一端加入采样电阻到地,通过频率的自动切换使AD读到不同的采样电压,我们可以根据激励信号对应的AD采样电压,判别出待测元器件的属性,进一步切换采样电阻,从而准确测量出待测元器件的大小。这一系列操作均为自动完成。系统原理实现框图如图1所示。
2 硬件实现
2.1 硬件电路总图
系统硬件实现电路如图2所示,考虑到模拟开关有内阻,我们选取继电器作为档位的切换,为了测量的准确,本文采用了多个电压跟随,防止电流过大在信号源端分压。
2.2 真有效值电路
系统硬件实现电路如图3所示,考虑到模拟开关有内阻,我们选取继电器作为档位的切换,为了测量的准确,本文采用了多个电压跟随,防止电流过大在信号源端分压。
2.3 自制测试用信号源电路
根据需要取截正频率为1kHz、10kHz、100kHz的低通无源滤波器,将单片机输出的PWM或方波(因为MSP430该单片机不能输出太大频率的PWM,我们通过直接输出10kHz和10kHz的方波,通过一个低通滤波器,滤掉二次谐波及以上分量,得到其基波分量)整形为正弦波,用继电器切换不同的滤波器,来获取不同信号,每一个频点滤波后接一级运放;放大到相同幅度,为了能满足放大100kHz的信号的增益带宽积和压摆率,运放采用TL084。通过测试发现,无源滤波电阻采用逐级增大,电容采用逐级减小,滤波效果最好,所以通过仿真得到参数如图4所示的滤波放大电路图。
3 软件实现
3.1 算法数学描述
电阻测量可以直接用一个直流分压可得到,其公式为:
R=(V/Vad-1)*R0 (1)
电容测量可以通过一个适中的低频f,此时电容的阻抗较大,对于电容因为有-90°的相移,所以我们对其整体取模,简化可得计算电容公式为:
3.2 软件流程图
根据以上算法分析本文的软件程序图如图5所示:
4 实验结果及分析
电路设计完成后,本文给出了三组实验测试数据,分别为表1、表2和表3所示,其中表1为电阻网络测试数据,表2为电容网络测试数,表3为电感网络测试数据。实验数据表明,除了电感测量误差相对较大之外,其它的测量能够较准确地反映待测元器件的属性以及大小,可以满足一般的实际需求。
5 结论
本文设计了基于数字控制的智能电阻、电感和电容测量仪,电路设计完成后通过实际测量数据可以看出,除了电感测量误差相对较大之外,其它的测量能够较准确地反映待测元器件的属性以及大小;通过查阅资料发现电感在不同的频率点的大小不同,也就是说电感的大小与对应测的频点有关,本系统的设计只取了三个频点,且最大频率为100kHz,所以误差较大,我们可以通过增加频点个数和最大频率以及增加采样电阻来减小该误差。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议