首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
MCU 单片机技术
»
ARM
» 基于ARM的过采样技术
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于ARM的过采样技术
发短消息
加为好友
yuyang911220
当前离线
UID
1029342
帖子
9914
精华
0
积分
4959
阅读权限
90
在线时间
286 小时
注册时间
2014-5-22
最后登录
2017-7-24
论坛元老
UID
1029342
性别
男
1
#
打印
字体大小:
t
T
yuyang911220
发表于 2015-1-27 17:41
|
只看该作者
基于ARM的过采样技术
科学技术
,
测控技术
,
分辨率
,
地震学
,
天文学
随着科学技术的发展,人们对宏观和微观世界逐步了解,越来越多领域(物理学、化学、天文学、军事雷达、地震学、生物医学等)的微弱信号需要被检测,例如:弱磁、弱光、微震动、小位移、心电、脑电等[1~3].测控技术发展到现在,微弱信号检测技术已经相对成熟,基本上采用以下两种方法来实现:一种是先将信号放大滤波,再用低或中分辨率的ADC进行采样,转化为数字信号后,再做信号处理,另一种是使用高分辨率ADC,对微弱信号直接采样,再进行数字信号处理。两种方法各有千秋,也都有自己的缺点。前一种方法,ADC要求不高,特别是现在大部分微处理器都集成有低或中分辨率的ADC,大大节省了开支,但是增加了繁琐的模拟电路。后一种方法省去了模拟电路,但是对ADC性能要求高,虽然∑-△ADC发展很快,已经可以做到24位分辨率,价格也相对低廉,但是它是用速度和芯片面积换取的高精度[4],导致采样率做不高,特别是用于多通道采样时,由于建立时间长,采样率还会显着降低,因此,它一般用于低频信号的单通道测量,满足大多数的应用场合。而本文提出的方案,可以绕过上述两种方法的缺点,利用两者的优点实现微弱信号的高精度测量。 过采样技术是提高测控系统分辨率的常用方法,已经被广泛应用于各个领域。例如,过采样成功抑制了多用户CDMA系统中相互正交用户码接收机(A Mutually Orthogonal Usercode-Receiver,AMOUR)的噪声[5~6],提高了光流估计(optical flow estimation,OFE)的精度[7],改善了正交频分复用(OFDM)信号的峰-均比[8]等。但是,这些过采样技术应用的前提是采样前的信号幅值能与ADC的输入范围相当。而用ADC采集微弱信号时,直接使用过采样技术提高不了精度,而且由于信号幅值远小于ADC的输入范围,它的有效位数还会减小,使精度随之下降。本文采用先叠加成形函数的方法,然后利用过采样技术,解决了因为信号幅值小,而使过采样失效的问题。本文还详细分析了成形函数类型和幅值,以及过采样率对分辨率的影响。
1 过采样技术分析
1.1 过采样原理
过采样是对待测数据进行多次采样,获取样本数据,累计求和这些样本数据,并对它们均值滤波,减小噪声后最终获得采样结果。过采样在一定条件下能够提高信噪比(SNR),同时使噪声减弱,从而提升测量分辨率。过采样技术将采样频率提高到被采样频率的4倍,能过滤掉高于3fb的分量,用数字
滤波器
过滤fb~3fb的分量,最终有用分量被完全保存下来。若采取足够多次采样,则能重现原始信号。式(1)是过采样的频率要求
式(1)中,Fo为过采样频率;n为希望增加的分辨率位数;fb为初始采样频率要求。
1.2 过采样与噪声、分辨率的关系
在提出过采样与噪声的对应关系之前,对量化噪声作一简单描述。量化误差是由相邻ADC码的间距所决定,因此相邻ADC码之间的距离为
式(2)中,N为ADC码的位数;Vr为基准电压。式(3)为量化误差ed的关系式。
奈奎斯特定理指出,如果被测信号的频带宽度小于采样频率的1/2,那么可以重建此信号。现用白噪声近似描绘实际信号中的噪声,在信号频带中的噪声能量谱密度为
式(4)中,e(f)为带内能量谱密度;ea为平均噪声功率;fs为采样频率。
ADC量化噪声的功率关系如式(5)所示。由于量化噪声会引发固定噪声功率,因此针对增加的有效位数能够计算过采样比
收藏
分享
评分
继承事业,薪火相传
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议