首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

DC-DC 电路设计 - 输出多种直流电压的AC/DC电源模块设计方案

DC-DC 电路设计 - 输出多种直流电压的AC/DC电源模块设计方案

[导读] (3)DC/DC 电路设计。 为了得到稳定可靠的12 V 和+5 V 直流电压,在DC/DC 电路中,分别选用高可靠的DC/DC模块实现低压直流输出。在低压侧,经过整流后得到
关键词:直流电压直流稳压电源AC/DC电源模块


  (3)DC/DC 电路设计。
  为了得到稳定可靠的±12 V 和+5 V 直流电压,在DC/DC 电路中,分别选用高可靠的DC/DC模块实现低压直流输出。在低压侧,经过整流后得到23 V 直流电压,通过采用不同的集成稳压器实现+9 V 和+12 V 输出,在每个模块的输入输出端分别加100 μF/25 V 和47 μF/25 V 的电解电容进行滤波。在高压侧,产生三个±12 V 和+5 V 直流电压,并且要求能够通过外部接口输入高低电平控制这三个电压信号的输出。故选用VICOR的VI-J61-IZ、VI-J61-IY 和VI-J60-IX 电源模块实现±12 V 和+5 V 电压输出。这三个模块的电源输入端接300 V 直流电源,即可获得高精度的±12 V和+5 V 电压,要想对DC/DC 的进行输出控制,只需要控制三个电源模块中的Gate In 端即可,三个DC/DC 电路原理图如图2 所示。图2 中当控制端信号为高电平时,VT1、VT2 和VT3 工作,此时DC/DC 的2 端接地,DC/DC 均不工作,±12V 和+5V 电压不输出;当控制端信号为低电平时,VT1、VT2 和VT3 均不工作,此时DC/DC 均正常工作,±12 V 和+5 V 电压输出。

  

  图2 三个DC/DC 电路原理图。

  (4)直流电压控制电路。
  直流电压控制电路的原理图如图3 所示。该电路主要由过欠压保护电路和外部电压控制电路两部分组成。过欠压保护电路主要是指当输入电压过高(或过低)时产生超过(低于)300 V 一定比例的电压后,经过调理电路使电压比较器MAX973 电压发生跳变,从而改变控制信号的输出,致使DC/DC 的Gate In 端电压跳变,进而使DC/DC 停止工作。外部电压控制电路是指当外部控制信号输入端电平发生改变时,控制信号的输出端的电压发生跳变,从而改变DC/DC 的Gate In端的电压,使DC/DC 停止(或开始)工作。
  当外部控制信号输入为低电平时,与非门电路中触发器输出为高电平,此时计数器清零,经过计数触发电路和反相器反相后控制信号输出为高电平,从而进一步验证三个DC-DC不工作,相应的DC/DC工作指示灯不亮。当外部控制信号输入为高电平时,与非门电路中触发器输出为低电平,此时计数器开始计数,经过计数触发电路和反相器反相后控制信号输出为低电平,从而进一步验证三个DC-DC正常工作,±12 V和+5 V电压输出,相应的DC/DC工作指示灯亮。

  

  图3 直流电压控制电路原理图。

4 实验结果
  该多路输出直流稳压电源模块已经应用于实际设备中,将该电源模块加220 V/50 Hz 交流电后,得到±12 V、+5 V、+6 V 和+9 V 输出电压。
  ±12 V 和+5 V 电压输出端的实测波形如图4 所示。将该电源模块放在-55℃~105℃下进行试验,发现在相同电源的情况下,测得直流输出电压不变。

  

  (a)+5 V 直流电压输出波形图。

  

  (b)+12 V 直流电压输出波形图。

  

  (b)-12 V 直流电压输出波形图。

  图4 直流电压输出实测波形。
  5 结束语
  通过实际应用表明,该电源模块达到了设计要求,不但具有多路输出直流电压的功能,而且具有输出电压稳定可靠、精度高等特点。
返回列表