首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
电源与功率管理
» 适用于可见光通信的LED器件
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
适用于可见光通信的LED器件
发短消息
加为好友
porereading
当前离线
UID
863084
帖子
7183
精华
0
积分
3592
阅读权限
90
在线时间
209 小时
注册时间
2011-11-30
最后登录
2019-8-28
论坛元老
UID
863084
1
#
打印
字体大小:
t
T
porereading
发表于 2015-2-17 10:56
|
只看该作者
适用于可见光通信的LED器件
出发点
,
载流子
,
台湾
,
通信
,
大学
台湾中央大学的许晋玮等人通过串联的方式也有效提高了LED调制速率,其出发点也是基于对RC时间的优化。假如N个相同的LED串联,电阻值将线性增加R总=N.R,而电容值线性降低C总=C/N.这样虽然RC时间没有发生变化。但是,一般器件都要外接负载,那么实际RC就是(N.R+R0)。C/N,因此,就小于单个相同面积LED的RC(RC+N.R0C),从而可以有效提高调制带宽。
2.2降低载流子自发辐射寿命
可见光(VLC)通信系统一般都工作在大电流区域范围内,因此还需要研究不同电流下频率响应。图6是不同电流下,器件频率响应曲线。外加驱动电流越大,电光转换(E-O)的3 dB带宽也会越大.从图6可以看出,120 mA下调制频率大约是40 mA下的2倍。主要因为激子复合几率正比于注入载流子密度.大电流下,注入的载流子浓度增加,因而激子复合几率增加,辐射复合载流子寿命降低,E-O快速响应。
图6不同电流对器件调制频率的影响
影响载流子自发辐射寿命的因素很多,一般来说,外部因素主要是来源于注入载流子的浓度;而内部因素主要是由于器件自身的结构以及其他复合通道等。
伊利诺伊大学香槟分校的M. Feng等人,通过一种类似异质结双极发光晶体管(HBLET)的LED将调制速率提高了一个量级,达到吉赫兹量级。HBLET是一种3端口发光器件(一个电输入端、一个电输出端、一个光输出端),器件中量子阱有源区合并到基区,提高了电学和光学的性质,而高速LED结构和HBLET相似。在60 mA驱动电流下,器件的E-O调制频率高达7 GHz,但是功率很小,大约仅为13.8μW.图7为器件(n-p-n结构)的结构示意图,可以看到发射极接负电压,基极和集电极(这个也叫漏极Drain)接正极,这样发射结正偏,集电结反偏。因为基极和漏极同一电位,基极-漏极边界没有电荷分布积累,交流驱动下,在基区建立动态的发射极与漏极的电荷分布。因此,基区的过剩载流子自发辐射复合的寿命就大于从发射极到漏极的传输时间,使得载流子还没有来得及复合,就被内建反向电场扫到漏极,仅保留快速的载流子复合发光,从而提高了调制速度。
图7高速Tilted-charge LED结构
图8给出了E-O的频率测试结果。调制频率非常高,并且随着电流的增加,调制速度提高,在60 mA时达到7 GHz.这个结果和塑料光纤发光二极管(POF-LED)结果相同。但是存在一个很大的问题是,器件的功率非常小,3 V的正向偏压下,驱动电流达到60 mA,所对应的光功率只有15μW,完全不适用于照明LED,不过该工作也提供了一种改进大功率LED带宽的思路。
图8不同驱动电流IE下的频率特性(电荷倾斜分布LED(25℃))
材料中的载流子复合机制包括辐射复合、非辐射复合。表面等离激元耦合是除了前面两者外第3种能量传递通道也能够影响辐射复合载流子寿命,提高LED调制带宽。
加州理工学院的Koichi Okamoto等人首次在LED上利用表面等离激元,得到出光增加的效果。如图9所示,载流子复合的能量转换有多个途径,包括辐射复合、非辐射复合以及量子阱-表面等离激元(QW-SP)耦合。非辐射复合不能产生光子,能量最终以热的形式耗散掉了;辐射复合能够产生光子,产生的光子有一部分能够溢出器件,逃逸出的光子数能通过外量子效率反映。图9中黑色箭头表示QW-SP耦合的可能形式。载流子复合后能量没有直接转换为光子,而是耦合到距离比较近(30 nm左右)的表面等离激元中(SP),然后再以辐射的形式将能量放出到LED外面。这个过程的速度远比辐射复合能量转换速度快。490 nm波长下,差异明显减小,这个是由于QW-SP耦合波长在蓝光,因此长波长的位置,能量耦合减弱,差异减小。
图9电子空穴复合时QW与表面SP耦合
通过Al组分调控以及delta掺杂技术,同样可以实现LED器件带宽的提高。Al组分调控,原理主要是改变能带结构,实现空穴的有效注入,调控极化电场,从而实现调制带宽的提高,300 mA工作电流下,带宽从23.5 MHz提高到25.5 MHz;delta掺杂技术,实现了载流子的大量注入,从而降低了载流子寿命,实现相同电流密度下,调制带宽的提高。图10给出了delta掺杂后器件的眼图。
图10 Delta掺杂的LED器件在40 mA的260 Mb/s眼图
3结束语
随着光效的提高和成本的降低,LED已经被广泛地应用于信息显示和各种功能性照明。可见光通信利用了LED相比传统光源高光效和高响应速率的特点,在照明的同时,实现无线数据传输功能。常规的白光LED器件调制带宽通常只有3~5 MHz,制约了可见光通信系统带宽的进一步提高,通过适当的调整材料和芯片的结构,优化器件工艺参数,引入表面等离激元等新的辐射复合机制等方式能够有效的提高LED器件调制带宽,进一步拓展可见光通信系统的应用范围。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议