首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
模拟电路
» 同轴变换器原理及射频功率放大器宽带匹配设计
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
同轴变换器原理及射频功率放大器宽带匹配设计
发短消息
加为好友
520503
当前离线
UID
872339
帖子
13270
精华
0
积分
6635
阅读权限
90
在线时间
361 小时
注册时间
2012-3-2
最后登录
2016-3-10
论坛元老
UID
872339
1
#
打印
字体大小:
t
T
520503
发表于 2015-2-23 21:14
|
只看该作者
同轴变换器原理及射频功率放大器宽带匹配设计
功放
,
最大功率
,
发射机
,
放大器
,
通信
射频功率放大器
的
宽带匹配
设计
在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。例如,工作于多个倍频程甚至于几十个倍频程。这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使
射频功率放大管
的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。同轴电缆阻抗变换器简称
同轴变换器
,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。同轴变换器具有功率容量大、频带宽和屏蔽性能好的特性,可广泛应用于HF/VHF/UHF波段。
1 方案设计
同轴变换器及其组合是一种具有高阻抗变换比的宽带阻抗匹配网络,它能将射频功率放大管的较低的输入阻抗或输出阻抗有效匹配到系统的标准阻抗50 Ω。同轴变换器设计方案多选用1:1变比形式、1:4变比形式及其组合形式。
1.1 同轴变换器原理
同轴变换器是由套上
铁氧体磁芯
的一段同轴电缆或同轴电缆绕在铁氧体磁芯上构成,一般称为“巴伦”。“巴伦”的结构如图1(a)所示,其等效电路如图1(b)所示。
图1 “巴伦”的结构和等效电路
同轴变换器处于集中参数与分布参数之问。因此,在低频端,它的等效电路可用传统的低频变压器特性描述,而在较高频率时,它是特性阻 抗为Zo的传输线。同轴变换器的优点在于寄生的匝间电容决定了它的特性阻抗,而在传统的离散的绕匝变压器中,
寄生电容
对频率性能的贡献是负面作用。
当Rs=RL= Zo时,“巴伦”可以认为是1:1的阻抗变换器。同轴变换器在设计使用上有两点必须注意:源阻抗、负载阻抗和传输线阻抗的匹配关系;输入端和输出端应在规定的连接及接地方式下应用。在大多数情况下,电缆长度不能超过最小波长的八分之一。为了保证低频响应良好,还必须有一定绕组长度,可以依据下列经验公式来估算在频率高端和频率低端时所需绕组的长度。
在高频端:
lmax≤ 18 O00n/fh(cm)。 (1)
式中,fh为最高工作频率(MHz);n为常数,一般取为0.08左右。
在低频端:
lmin≥ 50Rl / [ (1 + u/uo ) × fl ]。 (2)式中,fl为最低工作频率(MHz);u/uo为磁芯在时的相对磁导率。
磁芯的影响可以用等效电感来反应,等效电感决定了频段低段反射量的大小,计算为:
L=uo ur n2 (S/J) (3)式中,L为电感值(H);ur为相对磁导率;uo=4πx 10-7;S为磁环的面积;J为平均电长度;n为线圈圈数。
为避免频段高段指标恶化,电感值不能大于实际需要值,其经验公式为:
L = 4( R/Wmin) (4)
式中,R 为中间频带的输入阻抗;Wmin为最小角频率。
3 设计实例
根据工程需要,运用同轴变换器宽带匹配技术设计一种多倍频程高功率放大电路,覆盖民用和军用频带,频率范围为20~500 MHz。功率管选用双管芯结构的平衡型n沟道增强型射频放大管BLF574。设计用于输出功率达350 W,功率增益大于16 dB,频率范围高HF至UHF的宽带功率放大器。在225 MHz频率左右器件的输入和输出阻抗都呈感性,输入阻抗Zs =(3.2+j2.5)Ω,输出阻抗ZL = (7.5+j4.0)Ω。
3.1 输入匹配网络
BLF574有一个相当大的输入电容,为了提供器件输入端在多倍频上的宽带匹配,必须考虑输人电容在频率高端的影响,且折中考虑中间频率及较低频率上低值输入阻抗的影响。输入匹配网络设计成2级级联的4:1同轴变换器,完成16:1阻抗变换,将5O Ω标准阻抗匹配接近于3 Ω,这个值还要通过简单的串联微带线和并联电容转换成器件的输入电阻。第1级4:1同轴变换器电缆选择UT - 047 -25,特性阻抗Zo=25 Ω,电缆长度45 mm。补偿低频响应的磁芯选择2861002402,初始磁导率ui = 125。第二级4:1同轴变换器电缆选择UT - 043 -l0,特性阻抗Zo =10 Ω,电缆长度45 mm,补偿低频响应的磁芯同样选择2861002402。输入匹配网络如图3所示。
图3 输入匹配网络
3.2 输出匹配网络
输出匹配网络设计成1:4同轴变换器级联同轴“巴伦”的形式。1:4同轴变换器电缆选择UT - l4l- l5,特性阻抗Zo =15 Ω,电缆长度68 mm。补偿低频响应的磁芯选择2661540202,初始磁导率ui=125。同轴“巴伦”完成平衡至不平衡输出的转换,同轴“巴伦”电缆选型UT - 141,特性阻抗Zo=50Ω,电缆长度68 mm。匹配电阻为:R =(25×15)1/2 / 4=4.8 Ω,这个值需要通过简单的串联微带线和并联电容转换成器件的输出电阻。输出匹配网络如图4所示。
图4 输出匹配网络
3.3 软件仿真及测试验证
3.3.1 软件仿真
将功率放大管的输入阻抗和输出阻抗各自假设为随频率变化的可变阻抗,按照宽带网络阻抗近似匹配法进行阻抗匹配,使用软件工具Ansoft-Serenade 8.7,分别建立以
同轴阻抗变换器
为模型的输入和输出宽带匹配网络,匹配端口均为标准50 Ω特征阻抗,匹配目标为输入或输出端口电压驻波比VSWR ≤2:1。利用频率参数扫描曲线,经调整优化各同轴电缆长度及特性阻抗、串联微带线的长度和并联电容的值得出宽带内理想的驻波一频率特性曲线。
3.3.2 测试验证
对根据以上设计完成的实际电路进行测试,在20~500 MHz频带内,输入回波损耗≤1.95:1,输入功率10 W 时,放大器的最小输出功率>350 W。测试结果表明,放大器的性能状态良好,所设计的同轴变换器匹配网络满足宽带匹配及功率要求。
4 结束语
同轴电缆阻抗变换器及其组合可以实现高的阻抗变换比,而且具有承受功率容量大、传输频带宽和屏蔽性能好的特点,结合少量集中参数元件组成匹配网络,实现了多倍频程功放的宽带匹配,有望解决一套发信机配备多台窄带功放的问题。该宽带匹配方法可以广泛使用于HF/VHF/UHF波段,具有良好的工程应用价值。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议