首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 短沟道MOSFET散粒噪声测试方法研究
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
短沟道MOSFET散粒噪声测试方法研究
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2015-3-3 19:58
|
只看该作者
短沟道MOSFET散粒噪声测试方法研究
电子元器件
,
电子学
,
信息
,
影响
近年来随着介观物理和纳米电子学对散粒噪声研究的不断深入,人们发现散粒噪声可以很好的表征纳米器件内部电子传输特性。由于宏观电子元器件中也会有介观或者纳米尺度的结构,例如缺陷、小孔隙和晶粒等,因而也会产生散粒噪声,并且可能携带内部结构的信息。这使人们对宏观电子元器件中散粒噪声研究产生了极大的兴趣。另一方面,随着器件尺寸的不断缩小,MOSFET器件中散粒噪声成分也越来越显著,已经严重影响器件以及电路的噪声水平,人们必须要了解电子元器件中散粒噪声的产生机理和特性,以便更好的抑制器件的散粒噪声,实现器件和电路的低噪声化。
对于短沟道MOSFET器件,在室温条件下,散粒噪声被其他类型的噪声所淹没,一般在实验中很难观察到它的存在。目前国内外对于散粒噪声测试技术的研究取得了快速的进展,但是普遍存在干扰噪声大、测试仪器价格昂贵等问题,难以实现普及应用。文中所介绍的测试系统是在屏蔽环境下将被测器件置于低温装置内,抑制了外界电磁波和热噪声的干扰;同时使用低噪声前置放大器使散粒噪声充分放大,并显著降低系统背景噪声;通过提取噪声频谱高频段平均值,去除了低频1/f噪声的影响,使测试结果更加的准确。使用本系统测试短沟道MOSFET器件散粒噪声,得到了很好的测试结果。文中的工作为散粒噪声测试提供了一种方法,对短沟道MOSFET散粒噪声测试结果进行了讨论。
1 测试原理
对于短沟道MOSFET中散粒噪声的测试,主要影响因素包括:外界电磁干扰、低频1/f噪声、热噪声以及测试系统背景噪声等。散粒噪声属于微弱信号,在实际测试中外界电磁干扰对测试结果影响显著,将整个实验装置放置于电磁屏蔽环境下进行测试,这样就有效地抑制了外界电磁干扰。散粒噪声和热噪声均属于白噪声,在室温下由于热噪声的影响,一般很难测量到散粒噪声的存在,因此需要最大限度降低热噪声的影响。在测试中将待测器件置于液氮环境中,在此温度下器件热噪声相对于散粒噪声可以忽略。对于器件散粒噪声的测试,必须通过充分放大才能被数据采集卡所采集,所以要、求放大器要有足够的增益,同时要求不能引入太大的系统噪声,否则系统噪声会淹没所测器件的散粒噪声,因此采用低噪声高增益的前置放大器。对于短沟道MOSFET,其低频1/f噪声非常显著,它对散粒噪声的影响很大,由于1/f只是在低频部分明显,在高频部分很小,因而可以通过提取噪声高频部分的平均值来降低1/f噪声对测试的影响,使测试结果更加的准确。据此,设计了一种低温散粒噪声测试系统。
2 测试系统设计及测试方案
2.1 测试系统设计
测试系统,如图1所示,主要由偏置电路、低噪声前置放大器、数据采集和噪声分析系统组成。将所有测试设备放置于双层金属网组成的屏蔽室内,可以有效的抑制外界电磁噪声的干扰;测试系统低温装置是一个装有液氮的杜瓦瓶,它可以提供77 K的测试温度,这样就有效的降低了热噪声的影响。Vcc1和Vcc2为电压可调的低噪声镍氢直流电池组,分别为器件提供栅源电压和漏源偏压,电池组不能用直流电源代替,因为直流电源的噪声比较大。
变阻器R1和R2均属于低噪声线绕电位器,最大阻值均为10 kΩ,分别用于栅源电压和漏源的调节。同时为了测试更加准确,变阻器R1和R2也一并置于液氮装置内,以降低其自身热噪声的影响。前置放大器采用美国EG&G普林斯顿应用研究公司制造的PARC113型低噪声前置放大器,放大增益范围为20~80 dB,测试带宽为1~300 kHz,其背景噪声很低,满足实验的测试要求。
数据采集和噪声分析软件为“XD3020电子元器件噪声-可靠性分析系统”软件,它包含5大功能:噪声频谱分析、器件可靠性筛选、噪声分析诊断、时频域子波分析、时域分析。对于散粒噪声分析,主要用到噪声频谱分析模块。
通过具体测试对系统进行了验证。设置栅源电压为0.1 V,漏源电压为0.36 V,为了降低低频1/f噪声的干扰,提取电流噪声功率谱299~300 kHz高频段的平均值。如图2所示,从图中可以看出高频段是白噪声。在室温下,被测器件噪声幅值为1.2×10-15V2/Hz左右;而77 K时,在相同偏置条件下测试了样品的噪声,电流噪声幅值为1.5×10-16V2/Hz左右,对比室温和77 K时样品噪声,可以看出噪声幅值降了一个数量级,通过计算可知热噪声被减少大约90%,可见77 K时热噪声被明显抑制。同时测量了低温下系统的背景噪声,它的噪声幅值为4×10-17V2/Hz左右,而低温下样品的噪声幅值为1.5×1O-16V2/Hz,因此低温下系统背景噪声相对较小,可以忽略。本测试系统能满足低温下散粒噪声测试的要求。
2.2 测试方案
实验样品选用0.18μm工艺nMOSFET器件,沟道宽长比为20μm/0.6μm,栅氧化层厚度为20 nm,阈值电压为0.7 V。分别测试器件在亚阈区、线性区和饱和区的源漏电流散粒噪声功率谱。具体步骤为,设置Vgs=0.1 V,使器件处在亚阈值区,Ids在0.055~1 mA变化,测试器件在不同沟道电流下的电流噪声功率谱值;再设置Vgs=1.2 V,使器件工作在反型区,测试Ids在0.055~1.5 mA变化时线性区和饱和区的电流噪声功率谱值。在功率谱提取时,取270~300 kHz频率段电流噪声功率谱的平均值,这样既可以去除低频1/f噪声对测试结果的影响,也可以通过平均值算法使分析的测试数据更加准确。
3 测试结果及讨论
图3和图4分别为器件工作在亚阈区和反型区条件下,电流噪声功率谱随漏源电流的变化情况。
由图中可以看出,在亚阈区,小漏源电流的条件下,沟道电流和电流噪声功率谱呈现线性关系,证明器件在此工作条件下存在散粒噪声。相比于长沟道MOSFET器件,短沟道器件沟道源区附件明显存在一个势垒,势垒高度随栅源电压的增大而增大,随漏源电压的增大而减小。在此偏置条件下,沟道内电场强度很小,扩散电流成分显著,扩散电流随机通过源极附近势垒,引起散粒噪声。随着漏源电压的增大,沟道内电场增强,势垒减小,漂移电流成为主要成分,散粒噪声随之被抑制。
在反型区,小的漏源电流条件下,器件工作在线性区。如图4所示,与亚阈区类似,可以看到明显的散粒噪声成分。但是随着漏源电流的增大,在漏源电流大约为0.5μA时,器件进入饱和区。此时源区势垒和沟道内扩散电流成分显著减小,因此导致由扩散电流引起的散粒噪声减小。但此时漏端沟道正好处在夹断点位置,载流子通过夹断点耗尽区是弹道传输模式,引起了散粒噪声的产生,导致散粒噪声再次随漏源电流的增大而增大。但随着漏源电流的继续增大,夹断区长度不断增加,载流子在夹断区散射增强,散粒噪声再次被抑制。
4 结束语
针对MOSFET散粒噪声难以测量的特点,文中提出了一种低温散粒噪声测试方法。在屏蔽环境下,将被测器件置于低温装置内,有效抑制了外界电磁波和热噪声的干扰。采用背景噪声充分低的放大器以及偏置器、适配器等,建立低温散粒噪声测试系统。应用本系统对短沟道MOSFET器件进行噪声测试,分析该器件散粒噪声的特性。文中的工作为器件散粒噪声测试提供了一种方法,对短沟道MOSFET散粒噪声特性进行了分析。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议