步骤2—构建
构建系统的第一个步骤是创建一个电源系统的方框图,从输出开始,然后向输入后向推进。从最低功率级别开始它的运作更好,并从那里继续工作,以便可以审查功率元件类别,并随功率级别的增加在必要时做出改变。
根据适当功率级别选择正确的元件类别非常重要。例如,在低功耗条件下,系统级封装产品(SiP),如Vicor ZVS降压稳压器是最好的解决方案。在较高功率级别,更好的方法可能是使用Vicor的ChiP产品(Converter housed in Package,转换器级封装)。根据驱动负载所需的电压轨数量的复杂性,可以在应用中使用SiP和ChiP的组合。
这将有助于实现系统内的最大功率密度和成本效益,并保持系统中每个器件的高效率运行。
回头看一下图1,很明显,前三路电压轨(MR#1、2和3)是需要最高功率级别器件的电压轨,而最后五路电压轨(MR#7直到AR#2)是功率级别最低的器件。其余的(MR#4直到MR#6)介于两者之间。在这里,设计人员将需要利用自己的判断力,决定器件方面的选择。完成了输出工作后,就可以开始在系统框图类别中建立一个我们需要的电源模块和功率级别的画面。
第2步-构建-按类区分
图3:从电源轨的需求分析,我们可以判断最合适的功率元件类别。 第2步-构建-框图-工作回到输入端(2)
第2步-构建-框图-如需要优化评估
图4:继续刚才的工作,我们可以确定为每路电压轨提供功率级别需要的元件类别。在这个级,我们应该时刻牢记确保我们平衡负载,并利用每个器件的功率容量所需的功率级别。在这里,我们看到了我们原来估计的优化。 第2步-构建-最终框图
图5:在这里,我们看到现在引入了驱动电压轨的ACFE。这里非常重要的是判断每路电压轨上的负载,并确保负载均操作于接近具有合适安全裕度的最大值。 步骤3—实施
一旦模块完成,设计人员需要为这些模块匹配器件编号,同时注意实现功能和仿真各自功率转换元件链的所有专用电路。需要开发的其他电路可能包括滤波器、保持电路和电源时序。在设计的这个阶段,工程师还应该考虑散热、端接,以及封装注意事项。
在我们的例子中,对电源有一些特殊的要求:在辅助电压轨上升之前,MR#3上有一个延迟;而对MR#3严格调控将需要使用一个遥感回路。为实现精确的负载电流限制和精确匹配电压轨和负载要求的其他参数,考虑配置PRM也是有意义的。
对于那些需要使用PRM来调整设计的工程师们,Vicor提供了一个PowerBench仿真工具,可帮助进一步了解系统的性能。
图6:PowerBench PRM仿真工具。 设计和开发工具
在过去,工程师们是通过参考器件数据表的计算,做出元件选择并分析每一级的电源系统效率(和总系统性能)。
从数据表查看功效
图7:获得性能信息可能既费时又费力。 虽然完全令人满意,但这种方法可能会变得有点单调乏味。为了简化设计流程和节省时间,Vicor最近推出了PowerBench白板工具(whiteboard)。白板工具是利用一组合适的Vicor电源转换元件设计和分析电源系统的一个在线工具。利用白板工具就不再需要查看包含在数据表中的运行和效率参数,工程师只需利用在线工具绘制出电路框图,所有计算即可在几毫秒内完成。
由Powerbench白板工具产生的更精确、更实际的转换效率达93.17%(以毫秒为单位自动生成)
图8:白板工具采用以毫秒为单位的自动分析设计,并提供性能数据,节约了时间和精力。 通过将系统熟悉的草图符号保留在白板工具上,添加参数自动查找和计算,白板工具可进一步缩短使用功率元件设计方法完成一个设计的时间。
此外,Vicor的解决方案选择工具还可与白板工具紧密结合。因此,解决方案选择工具推荐的设计可以自动将设计导入白板工具,这样工程师就不需要自己绘制系统。这时,工程师可以调整设计,以进一步满足他们的需求,并快速了解设计的效率。
结论
功率元件已经成为帮助工程师为当今电子系统设计复杂、高性能电源系统的一个关键因素。因为电源设计专家已经优化了效率、功率密度、瞬态响应、EMI和成本效益,几乎所有电子工程师都可以利用这些器件开发出一个电源系统,来满足具有挑战性的高性能要求。
在要求更好散热性能的推动下,近期出现了许多功率元件创新。ChiP平台提供了采用双面冷却的强于热散热的解决方案,是板上电源一个很好的范例。在未来,其他创新将进一步简化电源系统设计人员的任务,特别是在电源的前端。
这篇文章表明,功率器件设计方法提供了一个简单的三步方法,使工程师,即使不是电源专家,也可以构建能够提供高效率和高功率密度的复杂电源链。通过使用在线工具,这种方法得以进一步简化。但是,不像许多设计方案那样,功率元件设计方法消除了来自设计过程的痛苦和风险,而无需工程师花时间学习技术。无需特殊培训,工程师们就可以使用这一方法,缩短研发时间,同时确保优化他们的下一个电源链,以提供所需的性能。 |