首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

基于Cadence_Allegro的高速PCB设计信号完整性分析与仿真

基于Cadence_Allegro的高速PCB设计信号完整性分析与仿真

0 引言
            随着半导体工艺的迅猛发展以及人们对信息高速化、宽带化的需求,高速PCB设计已经成为电子产品研制的一个重要环节,信号完整性(Signal Integrity,SI)问题(包括反射、串扰、定时等)也逐渐发展成为高速PCB设计中难以避免的难题,若不能较好地解决信号完整性设计问题,将有可能造成高速PCB设计的致命错误,浪费财力物力,延长开发周期,降低生产效率。
            当今较主流的高速PCB设计基于SI仿真,在设计过程中融入SI分析与仿真指导设计优化,能较好地解决SI问题,产品首次成功率较传统设计方法显著提高。目前主流的高速PCB设计EDA工具如Mentor公司的PADS,Cadence公司的Allegro SPB系列都支持SI仿真,且功能强大,为基于SI的高速PCB设计提供了有利条件。对于高速PCB设计者来说,熟悉SI问题的基础理论知识,熟练掌握SI分析及仿真方法,灵活设计信号完整性问题的解决方案具有非常重要的意义。
            本文主要研究了常见反射、串扰、时序等信号完整性问题的基础理论及解决方法,并基于IBIS模型,采用Cadence_Allegro软件的Specc-traquest和Sigxp组件工具对设计的高速14位ADC/DAC应用系统实例进行了SI仿真与分析,验证了常见SI问题解决方法的正确性。
       
        1 常见信号完整性问题及解决方法
        1.1 常见信号完整性问题
            信号完整性(Signal Integrity)是指信号未受到损伤的一种状态,它表示信号质量和信号传输后仍保持正确的功能特性。从广义上讲,是指高速产品中由互连引起的所有问题,通过时序、噪声、电磁干扰(ENI)3种形式影响高速信号的质量,常见的SI问题包括反射、串扰、延迟、振铃、地弹、开关噪声、电源反弹、衰减等,解决信号完整性问题的关键在于对互连线阻抗的认识,很多SI问题都与互连阻抗有关,下文将从互连线阻抗的角度描述反射、串扰、定时问题。
        1.2 反射
            反射问题反映的是由单个网络的信号质量,与单个网络的信号路径及信号返回路径的物理特性有关。信号沿单个网络传播时,感受到互连线的瞬态阻抗变化。若信号感受到的互连阻抗保持不变,则保持不失真;若信号感受到互连的阻抗发生变化,信号在变化处产生反射,则产生失真。引致互连阻抗发生变化的主要因素有线宽变化、层转换、返回平面间隙、接插件、分支线、T型线或桩线、网络末端。
            信号反射、过冲、振铃现象都是由阻抗突变引起的。反射的信号量由瞬态阻抗的变化量决定,将单个网络由突变点划分为入射前区域1、入射后区域2,两区域瞬态阻抗分别为Z1,Z2,则反射信号与入射信号幅度之比为:
            
            式中:Vrefelect为反射电压;Vincindent为入射电压;ρ为反射系数。由式(1)可见,若要减小反射,则需减小ρ。具体的方法为:使用可控阻抗互连线;传输线末端终端匹配;采用对多分支结构不敏感的布线拓扑结构;最小化传输线几何不连续。对于点对点拓扑,常采用端接(即控制传输线一端或两端的阻抗)的方法减小反射。主要端接方法示意如图1所示。

       

       
             如图1所示,源端端接主要采用串行端接,远(负载)端主要采用并行端接、戴维南端接、RC端接。由于并行端接的电流消耗大,戴维南端接的直流功耗大,RC端接的开关速度低等缺点,最为广泛使用的是源端串联电阻端接的方式,实际设计中需根据情况选择使用。
        1.3 串扰
            串扰发生在两个相邻的网络之间,若一个网络发生动态变化,将会通过场的作用将噪声耦合到与其相邻的静态网络上,从而影响其信号质量。信号传播时的信号路径与返回路径存在边缘场,会产生容性耦合与感性耦合,称为互容和互感。当一个网络发生动态变化时,通过边缘场的作用,容性、感性耦合电流对相邻网络造成影响。开关噪声、地弹都是由串扰引起的。串扰分为近端串扰(NEXT)与远端串扰(FEXT),近端接近源端而远端远离源端。NEXT与FEXT幅值分别如式(2),式(3):
            
            
            式中:Vb静态线后向噪声电压;Va1为动态线上信号电压;kb为后向串扰系数;Vf为静态线远端电压;Va2为信号线电压;k1为远端耦合系数;为两条线耦合区的长度;RT为上升时间;CmL,CL,LmL,LL分别为单位长度互容、电容、互感、电感。由式(2),式(3)可知,减小NEXT的主要方法是减小CmL,LmL,通过加大网络间的距离可以做到这一点。减小FEXT的主要方法是增加RT,减小L,加大网络间的距离。减小串扰会增加系统成本,需要折中才能在保证信号完整性的基础上实现成本最节省化。
继承事业,薪火相传
返回列表