首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

基于80x86的Linux的分段和分页机制

基于80x86的Linux的分段和分页机制

1 基于80x86的Linux分段机制80386的两种工作模式:80386的工作模式包括实地址模式和虚地址模式(保护模式)。Linux主要工作在保护模式下。

在保护模式下,80386虚地址空间可达16K个段,每段大小可变,最大达4GB。逻辑地址到线性地址的转换由80386分段机制管理。段寄存器CS、DS、ES、SS、FS或GS各标识一个段。这些段寄存器作为段选择器,用来选择该段的描述符。

分段逻辑地址到线性地址转换图:


Linux对80386的分段机制使用得很有限,因为Linux的设计目标是支持绝大多数主流的CPU,而很多CPU使用的是RISC体系结构,并没有分段机制,所以2.6版内核只有在80x86结构下才使用分段,而且只是象征性地使用了一下:

所有Linux进程仅仅使用四种段来对指令和数据寻址。运行在用户态的进程使用所谓的用户代码段和用户数据段。类似地,运行在内核态的所有Linux进程都使用一对相同的段对指令和数据寻址:它们分别叫做内核代码段和内核数据段。下表显示了这四个重要段的段描述符字段的值:


Base
G
Limit
S
Type
DPL
D/B
P
用户代码段
0x00000000
1
0xfffff
1
10
3
1
1
用户数据段
0x00000000
1
0xfffff
1
2
3
1
1
内核代码段
0x00000000
1
0xfffff
1
10
0
1
1
内核数据段
0x00000000
1
0xfffff
1
2
0
1
1

相应的段描述符由宏__USER_CS,__USER_DS,__KERNEL_CS,和__KERNEL_DS分别定义。例如,为了对内核代码段寻址,内核只需要把这个宏产生的值装进cs段寄存器即可。 注意,与段相关的线性地址从0开始,达到232 -1的寻址限长。这就意味着在用户态或内核态下的所有进程可以使用相同的逻辑地址。所有段都从0x00000000开始,这可以得出另一个重要结论,那就是在Linux下逻辑地址与线性地址是一致的,即逻辑地址的偏移量字段的值与相应的线性地址的值总是一致的。

如前所述,CPU的当前特权级(CPL)反映了进程是在用户态还是内核态,并由存放在cs寄存器中的段选择符的RPL字段指定。只要当前特权级被改变,一些段寄存器必须相应地更新。例如,当CPL=3时(用户态),ds寄存器必须含有用户数据段的段选择符,而当CPL=0时,ds寄存器必须含有内核数据段的段选择符。

类似的情况也出现在ss寄存器中。当CPL为3时,它必须指向一个用户数据段中的用户栈,而当CPL为0时,它必须指向内核数据段中的一个内核栈。当从用户态切换到内核态时,Linux总是确保ss寄存器装有内核数据段的段选择符。

当对指向指令或者数据结构的指针进行保存时,内核根本不需要为其设置逻辑地址的段选择符,因为cs寄存器就含有当前的段选择符。例如,当内核调用一个函数时,它执行一条call汇编语言指令,该指令仅指定它逻辑地址的偏移量部分,而段选择符不用设置,其隐含在cs寄存器中了。因为“在内核态执行”的段只有一种,叫做代码段,由宏_KERNEL_CS定义,所以只要当CPU切换入内核态时足可以将__KERNEL_CS装载入cs。同样的道理也适用于指向内核数据结构的指针(隐含地使用ds寄存器)以及指向用户数据结构的指针(内核显式地使用es寄存器)。


2 基于80x86的Linux分页机制
Linux分页机制的作用:分页机制是在段机制之后进行的,它进一步将线性地址转换为物理地址。我们先来看看硬件构造:


80386使用4K字节大小的页,且每页的起始地址都被4K整除。因此,早期80386把4GB字节线性地址空间划分为1M个页面,采用了两级表结构。

两级表的第一级表称为页目录,存储在一个4K字节的页中,页目录表共有1K个表项,每个表项为4个字节,线性地址最高的10位(22-31)用来产生第一级表索引,由该索引得到的表项中的内容定位了二级表中的一个表的地址,即下级页表所在的内存块号。

第二级表称为页表,存储在一个4K字节页中,它包含了1K字节的表项,每个表项包含了一个页的物理地址。二级页表由线性地址的中间10位(12-21)位进行索引,定位页表表项,获得页的物理地址。页物理地址的高20位与线性地址的低12位形成最后的物理地址。

利用两级页表转换地址图:



80x86的分页机制由CR0中的PG位启用。如PG=1,启用分页机制,并使用本节要描述的机制,把线性地址转换为物理地址。如PG=0,禁用分页机制,直接把前面段机制产生的线性地址当作物理地址使用。


80386使用4K字节大小的页。每一页都有4K字节长,并在4K字节的边界上对齐,即每一页的起始地址都能被4K整除(物理地址最低12位为0)。因此,80386把4G字节的线性地址空间,划分为1G个页面,每页有4K字节大小。

分页机制通过把线性地址空间中的页,重新定位到物理地址空间来进行管理,因为每个页面的整个4K字节作为一个单位进行映射,并且每个页面都对齐4K字节的边界,因此,线性地址的低12位经过分页机制直接地作为物理地址的低12位使用。

线性/物理地址的转换,可将其意义扩展为允许将一个线性地址标记为无效,而不是实际地产生一个物理地址。有两种情况可能使页被标记为无效:其一是线性地址是操作系统不支持的地址;其二是在虚拟存储器系统中,线性地址对应的页存储在磁盘上,而不是存储在RAM存储器中。在前一种情况下,程序因产生了无效地址而必须被终止。

对于后一种情况,该无效的地址实际上是请求操作系统的虚拟存储管理系统,把存放在磁盘上的页传送到物理存储器中,使该页能被程序所访问。由于无效页通常是与虚拟存储系统相联系的,这样的无效页通常称为未驻留页,并且用页表属性位中叫做存在位的属性位进行标识。未驻留页是程序可访问的页,但它不在主存储器中。对这样的页进行访问,形式上是发生异常,实际上是通过异常进行缺页处理。
继承事业,薪火相传
返回列表