首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

根升余弦脉冲成形滤波器FPGA实现(2)

根升余弦脉冲成形滤波器FPGA实现(2)

1 二进制基带信号平方根升余弦成形原理
    实际系统中,广义信道传递函数H(f)由发送滤波器HT(f)、信道HC(f)、接收滤波器HR(f)三部分共同构成,即:
   
    根据乃奎斯特第一准则,当H(f)幅频特性满足的滚降系数为α升余弦滤波器特征时,可以实现无ISI传输时刻降低对采样时钟精度的要求,当信道噪声可以忽略时,取HC(f)≈1,按照接收滤渡器的输出信噪比最大准则,有:
   
    式中:T为输入码元的周期;α为滚降系数。记f0=1/(2T),由式(2)可推出滚降系数为α平方根升余弦冲击响应为:

   
    其时域响应如图1所示。在数字化波形成形时,为确保h(t)采样后的h[n]保持第一类线性相位,舍去h(t)|t=0样点,同时对N(偶数)点h[n]右移N/2。文中采用的h(t)中t∈[-4T,4T],采样间隔为T/8,于是,采样后根升余弦成形滤波器的64个归一化h[n]如表1 所示。



    设发送端传递的二进制数据是{…,a-4,a-3,a-2,a-1,a0,a1,a2,a3,a4,a5,…},则发送滤波器的输出如图2所示,该波形函数可表示为:
   
    可以看出,当前传递信息{a0}时刻对应的波形信号的上升沿y[1..8]分别由h-4[57..64],h-3[49..56],h-2[41..48],h-1[33..40],h0[25..32], h1[17..24],h2[9..16]与h3[1..8]线性表示,如式(5)所示:
   
2 二进制基带信号平方根升余弦成形滤波器的FPGA实现
    在分析文献的基础上,文中波形成形滤波器的实现采用的查表法结构如图3所示。其中,ROM单元存储待成形的数据与成形滤波器的冲击响应的卷积结果。模8计数器的工作时钟速率是待成形数据速率的8倍。待成形数据从8位移位寄存器的低位移入后,选择ROM表中的数据块da-ta i,同时模8计数器C从(000)2~(111)2计数,并用该计数结果C(j)选择输出data i中的y[j]。当计数器C计数归零时,新的待成形数据从低位移入8位移位寄存器。该设计的一个优点是:ROM表中的数据在计算时,ai可采用双极性码,而查找表地址产生电路使用单极性码。文中设计时,波形数据的计算采用了反逻辑、双极性、不归零码,即输入信息符号序列{0,1)映射为{+1,-1),持续时间不变。



2.1 连续查找表法的一种改进实现
    由图3不难实现采用本文的波形成形设计方案,共需要的ROM单元数目达2 048个。为此,可采用电路分割技术,将图3所示的8位移位寄存器输出的高8位地址同时给一个11位的中间寄存器,该中间寄存器的高8位又分为高4位与低4位,分别用于查找两个各具有16个单元的ROM表,之后再将各自的输出相加,此时消耗的ROM单元数共为256个。采用分割技术时,模8计数器、中间寄存器、ROM表三个部分的工作时钟相同。
2.2 根升余弦成形滤波器的VHDL实现
    文中所述滤波器是在Modelsim 6.3d环境下采用VHDL实现的。Quarts环境中以文本方式调用LPM_ROM宏功能模块,定制ROM元件data_ rom_16,元件的地址宽度分别是4 b,输出数据字宽同为15 b。加法器的输出字宽16 b。实现的部分VHDL代码如下:

     
   
2.3 Modelsim时序仿真结果
    Modelsim环境不能直接对mif格式的ROM初始化数据进行仿真,应在QuartsⅡ环境下先打开mif文件,再另存为hex格式,然后在Modelsim环境下编译后即可仿真。同时,如此操作又可将负值数据转为补码表示。Modelsim仿真结果如图4所示,其中clk的周期为160 ns,正好是一个din码元的宽度T,系统中地址产生电路的时钟周期是20 ns,以确保在一个码元持续时间内系统有8个样点输出。从图4中发现,一个码元成形后波形值延迟6T。


3 结论
    文中所述的基于电路分割技术的查表法,实现通信系统发送端根升余弦滚降成形滤波器的FPGA实现方法简单可行,且当截断码元数目增多时或码内样点数目增加时,仅通过改变地址移位寄存器的长度或计数器的长度与ROM的长度即可,不至于使电路的复杂度成倍增加。
继承事业,薪火相传
返回列表