首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
模拟电路
» 关于电压反馈型电阻的真相
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
关于电压反馈型电阻的真相
发短消息
加为好友
苹果也疯狂
当前离线
UID
852722
帖子
10369
精华
0
积分
5185
阅读权限
90
在线时间
277 小时
注册时间
2011-8-30
最后登录
2016-7-18
论坛元老
UID
852722
1
#
打印
字体大小:
t
T
苹果也疯狂
发表于 2015-10-28 18:44
|
只看该作者
关于电压反馈型电阻的真相
下一步
,
稳定性
,
放大器
,
影响
在一些情况下,全差分电压反馈型放大器的稳定性似乎受反馈电阻值很大影响—RF/RG比始终正确,这到底是因为什么呢?
信号需要增益时,放大器是首选组件。对于电压反馈型和全差分放大器,反馈和增益电阻之比RF/RG决定增益。一定比率设定后,下一步是选择RF或RG的值。RF的选择可能影响放大器的稳定性。
放大器的内部输入电容可在数据手册规格表中找到,其与RF交互以形成传递函数的中的一个极点。如果RF极大,此极点将影响稳定性。如果极点发生的频率远高于交越频率,则不会影响稳定性。不过,如果通过f = 1/(2πRFCin,amp)确定的极点位置出现在交越频率附近,相位裕量将减小,可能导致不稳定。
图1的示例显示小信号闭环增益与ADA4807-1电压反馈型放大器频率响应的实验室结果,采用同相增益为2的配置,反馈电阻为499 Ω、1 kΩ和10 kΩ。数据手册建议RF值为499 Ω。
小信号频率响应中的峰化程度表示不稳定性。RF从499 Ω增加至1 kΩ可稍微增加峰化。这意味着RF为1 kΩ的放大器具有充足的相位裕量,且较稳定。RF为10 kΩ时则不同。高等级的峰化意味着不稳定性(振荡),因此不建议。
图1. 使用不同反馈电阻的实验室结果。VS = ±5 V,VOUT = 40 mV p-p,RLOAD = 1 kΩ,RF值为499 Ω、1 kΩ和10 kΩ。
图2. 使用ADA4807 SPICE模型的模拟结果。VS = ±5 V,G = 2且RLOAD = 1 kΩ,RF值为499 Ω、1 kΩ和10 kΩ。
图3. 使用ADA4807 SPICE模型的脉冲响应模拟结果。VS = ±5 V,G = 2且RLOAD = 1 kΩ,RF值为499 Ω、1 kΩ和10 kΩ
图4. 3.3 pF反馈电容CF的脉冲响应模拟结果。VS = ±5 V,G = 2,RF = 10 kΩ且RLOAD = 1 kΩ
在实验室中验证电路不是检验潜在不稳定性的强制步骤。图3显示使用SPICE模型的模拟结果,采用相同的RF值499 Ω、1 kΩ和10 kΩ。结果与图1一致。图3显示了时域内的不稳定性。通过在RF两端放置反馈电容给传递函数添加零点,可以去除图4所示的不稳定性。
RF的选择存在权衡,即功耗、带宽和稳定性。如果功耗很重要,且数据手册建议反馈值无法使用,或需要更高的RF值,可选择与RF并联放置反馈电容。此选择产生较低的带宽。
为电压反馈型和全差分放大器选择RF时,需要考虑系统要求。如果速度不重要,反馈电容有助于稳定较大的RF值。如果速度很重要,建议使用数据手册中推荐的RF值。
忽略RF与稳定性、带宽和功率的关系可能妨碍系统,甚至阻碍系统实现完整性能。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议