首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

高效率高谐波抑制功率放大器的设计

高效率高谐波抑制功率放大器的设计

0 引言
随着无线通信的快速发展和广泛普及,无线系统标准对收发机的性能要求越来越高。功率放大器作为发射机的主要组成部分,其指标决定着发射机的性能,如效率 决定着整机功耗,线性度决定着整机的动态范围,谐波分量大小又是发射机线性度的度量。传统的功率放大器为了获得较高效率,功放管通常会工作于饱和状态,这 时将有大量的谐波分量产生。如果不对谐波分量加以回收和抑制,这不单会造成能量的浪费,降低了其效率,还会对其他信道的信号造成干扰。

通常功率放大 器为了获得较高的效率和较低的谐波分量都使得功率放大器工作于F类,但该结构需要采用λ/4传输线,占用空间面大,不利于小型化。采用了 低通输出匹配网络设计了一个工作于E类的功率放大器,在11 dBm输入时的2~5阶谐波分量分别为:-19 dBc、-30 dBc、-38.5 dBc、-41.7 dBc。但该结构采用E类放大器,它要求功放管具有较高的集电极击穿电压,这与集成电路发展趋势相违背。采用GaN工艺设计的功率放大器,为了 获得较好的谐波性能,该设计在输出匹配网络中引入了两根开路传输线,但开路传输线的使用使得该方法与现代电路向小型化、集成度高方向发展相违背。

本文提出了一种结构简单、利于集成且具有谐波抑制功能的输出匹配网络,利用该方法采用InGaP/GaAs HBT工艺设计了一个工作于2 GHz频率的功率放大器。测试结果表明,利用该方法设计的功率放大器获得了较高的效率和很好的谐波性能。

1 电路设计
一个典型的功率放大器通常由输入匹配网络、放大电路、直流偏置电路和输出匹配网络组成。然而对功率放大器性能起决定性作用的还是匹配网络。它作为 功率放大器的重要组成部分,任何一个不合适的匹配网络都可能会引起电路的不稳定,导致功率放大器输出功率小、效率低,恶化其线性度。设计匹配网络时,在满 足基本的阻抗变换的同时,还要兼顾到其谐波阻抗,插入损耗以及网络的带宽,最后还需要考虑所设计的网络是否易于实现以及小型化。

1.1 具有谐波抑制功能的输出匹配网络
输出匹配网络作为匹配网络中最重要的部分,决定着功率放大器的功率和效率,以及最终功率放大器的谐波性能。文献[6-7]详细说明了输出匹配网络二次谐 波阻抗对其效率的影响,但都忽略了高次谐波的影响。本文设计的输出匹配网络在考虑二次谐波阻抗的同时,还兼顾了高次谐波阻抗,其结构如图1所示。


其中C1起隔直作用,L1、C3和L5、C2构成一个二级低通网络,在基频时主要起阻抗变换作用,在高阶奇次谐波处呈现出高阻抗,C4和L4构成一个串 联LC谐振网络,谐振频率为2ω0,其中ω0为基频,使得输出网络在二次谐波处得到一个短路的负载。该结构类似于F类功率放大器[8],对奇次谐波负载呈 现高阻抗,对偶次谐波负载呈现低阻抗,有利于对功放管的输出电压电流波形进行整形,减小两者之间的重合提高了效率[9]。同时为了对高次谐波能量进行回收 和抑制,在该两级LC低通匹配中加入了两个电感L3和L2,它和C3、C2构成一个串联谐振网络,谐振频率分别为3ω0和5ω0,即分别对3次谐波和5次 谐波进行处理。输出匹配结构的分析如下:对于功放管的负载,它的值大小与输出功率的关系为:



为了获得较好的网络带宽,两级LC低通匹配网络中间级的阻抗为:




对于由LC构成的谐波处理网络,当其谐振在高次谐波频率上时,在基频处,该网络等效为一个电容,如图2所示,设L2C2谐振在n次谐波处(图2(a)),在基频处它等效为电容Ceq1(图2(b)),其关系为:



工作于基频时,该网络的阻抗为:

联立(3)(4)两式得:
 

即谐振网络在基频处的等效电容与谐振网络的电容关系为:
 
对于本设计因L2C2谐振在5次谐波频率处,L3C3谐振在3次谐波频率处,所以有:


对于L4C4组成的串联谐振网络,其谐振频率为2ω0,主要用于回收2次谐波能量,这样能对功放管输出端的电压和电流波形进行整形,减小两者之间的重合,提高功率放大器的效率。电容电感两者之间满足以下关系式:


1.2 整体电路设计
本文采用以上介绍的具有谐波抑制功能的输出匹配网络,采用InGaP/GaAs HBT工艺设计了一个工作于2 GHz频率的高效率高谐波抑制的功率放大器,该放大器采用三级放大结构,供电电压为5 V,具体电路结构如图3所示。


该设计为了获得高的增益采用了三级放大结构,其中第一级工作于A类状态,以获得高的线性度,该级采用了一个RC负反馈使电路能稳定工作;第二级工作于浅 AB类状态;第三级为了获得高的效率工作于深AB类状态。其中虚线方框内的部分为片内实现,方框外的部分采用多层基板、绑定线和贴片元件来实现。对于级间 匹配网络,匹配电感于外部绑定线实现有助于减少级间匹配网络的插损,获得了较高的效率和功率,同时调试灵活方便。对于输出匹配网络,其中L4由绑定线和基 板上的传输线共同组成,通过调节金线的长度,可以控制二次谐波分量的大小。而对于L3和L2,由于该网络是对高次谐波进行抑制,所需电感较小,主要是由多 层基板的过孔构成。

2 测试结果

本芯片采用InGaP/GaAs HBT工艺制作,图4为芯片实物图,DIE面积为1 mm×1 mm,整体封装大小为4 mm×4 mm。图5为本设计S参数测试结果,测试平台为安捷伦矢量网络分析仪E5071C。测试结果表明,在2 GHz频率处该设计的S参数为:S21=35.1 dB,S11<-10 dB,S22<-10 dB,从S参数看出本设计获得了很好的小信号性能。图6为输出功率和输入功率的关系图,从图可知当Pin小于0 dBm时,放大器工作于线性工作状态,当Pin大于0时开始出现压缩,到达3 dBm时,输出功率已经饱和,此时Pout=35.2 dBm,放大器的1 dB压缩点为P1dB=34.2 dBm。

从该图可知,该放大器获得了较好的线性度。图7为增益Gain和效率PAE随着输入功率的变化的曲线图,该图表明该设计的增益在Pin<0 dBm时,增益波动小于0.2 dB,表明该设计获得了很好的AM-AM,在饱和工作时,即Pout=35.2 dBm时,效率为PAE=48%;工作于1 dB压缩点时,即Pout=34.2 dBm时,效率为PAE=43%。从效率曲线图可知,该放大器不但在饱和工作时获得了很高的效率,在线性工作时也获得了很好的效率。表1是该设计的谐波性 能与其他设计的比较,从表1可知本设计在考虑二次谐波同时还兼顾了高次谐波,达到了良好的谐波抑制,特别是在对高次谐波的处理上。





3 总结
本文通过在功率放大器的输出匹配网络中引入多个LC谐振网络来对功率放大器的谐波能量进行回收和利用,提高了功率放大器的效率,抑制了负载端的谐波分 量。该方法简单,易于实现及利于功率放大器的小型化。利用该方法设计了一个工作于2 GHz频率的功率放大器,该功率放大器的实测结果为:增益为Gain=35 dB,1 dB压缩点为P1dB=34.2 dBm,饱和工作时效率为PAE=48%,各次谐波分量大小分别为:HD2=-53 dBc、HD3=-58 dBc、HD4=-65 dBc、HD5=-60 dBc。测试结果表明,该方法设计的功率放大器获得了很好的效率和谐波性能。

返回列表