首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

EM算法详解 (本文更加详细)

EM算法详解 (本文更加详细)

1 极大似然估计      假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么?
  

图1 学生成绩的分布

  

    欲求在抽样X时,最优的μ和σ2参数估计,虽然模型的原型已知,但不同的参数对应着不同的学生成绩分布,其中一种最简单有效的参数估计方法就是估计的参数在目前抽样的数据上表现最好,即使得f(X|μ,σ2)的联合概率最大,这就是极大似然估计,常用L(μ,σ2|X)表示,满足公式(1)所示的关系。在实际计算中,对数函数是一个严格递增的函数,对似然函数取代数后,计算要简单很多,而且直接的似然函数计算中涉及大量浮点概率的乘法,容易导致计算机浮点计算精不够而出现机器0值,从而常用公式(2)的l(μ,σ2|X)来求极大似然估计,更普遍的如公式(3)所示。     余下的问题,就是求l(μ,σ2|X)的极大值的过程,即参数的一阶偏导为0的极值点,在此不详述了,可参看下图。

         非常庆幸,对于正态分布来说,μ和σ2都能解析地直接求解,从而得到学生成绩满足何种正态分布。但实际情况是,许多应用模型中求解μ和σ2都十分困难。
  2 隐含状态的极大似然估计      如第1节中所述,学生的单科成绩满足高斯分布f(x|μ,σ2),假设抽取的X是学生的语文和数学成绩,显然这样的成绩应该符合分布g(x|λ1,λ2,μ1,μ2,σ12,σ22),如公式(3)所示,两个混合的高斯分布,λ1,λ2分别表示f(x|μ1,σ12)和f(x|μ2,σ22)的在模型中的比率。
      对于公式(5)所示的极大似然估计求解中,偏导的方程组,由于和的对数的数据,方程组的求解已经是神鬼难助了。
      如果知道Xm={x1,x2,…,xm}属于语文成绩,Xelse={x1+m,x2+m,…,xn}属于数学成绩,g(x|θ)将变得极其简单,完全可以由第1节方法求解;如果知道μ1,μ2,σ12,σ22,求Xm和Xelse也很容易——鸡蛋困境?
      接下来详述的EM(Expectation Maximization, EM)算法解决的就是这个鸡蛋困境,不管是先有鸡还是先有蛋,最终命运都会被享用。
  3 EM算法      在此先将问题抽象,已知模型为p(x|θ),X=(x1,x2,…,xn),求θ。引入隐含变量Z=(z1,z2,…,zn),使得模型满足公式(6)或公式(7)的关系。由第1节的极大似然估计有,l(θ)满足公式(8)。
      和很多求极值的算法一样(NN的BP算法),EM算法也是通过迭代计算l(θ) 的极值的。假设第n轮迭代计算出的
  θ为θn,在新的迭代中,最简单的想法就是新的θ要优于θn即可,有l(θ)-l(θn)如下所示。如公式(9)描述,计算的的难度主要在于log函数中的求和,为解决这个问题和找到l(θ)-l(θn)的下界值,引入Jensen不等式。
  
  
   函数的凹凸性与Jensen不等式:     
       如果f(x)为凸函数,f(x)满足公式(10)的关系,具体证明不述,紧述的函数图就明了地描绘了这种关系。更一般地说,f(x)满足公式(11)中的关系,证明可由公式(10)导出,称为Jensen不等式。
          至于什么是凸函数,f(x)的二阶偏导恒大于(或等于)0,如果x为高维向量,hessian矩阵必须(半)正定,凹函数属性相对。
        而f(x)=log(x), f’’=-1/x2<0 就为一个典型的凹函数,满足关系(11)。
   
  
继承事业,薪火相传
好文章,感谢楼主的分享,解决了我许多的问题
返回列表