首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

广义矩估计(GMM estimator)和自举法(bootstraping)

广义矩估计(GMM estimator)和自举法(bootstraping)

广义矩估计
概念:广义矩估计,GMM(Generalizedmethod of momentsestimator),是基于模型实际参数满足一定矩条件而形成的一种参数估计方法,是矩估计方法的一般化。只要模型设定正确,则总能找到该模型实际参数满足的若干矩条件而采用GMM估计。
基本思想:随机抽样中,样本统计量将依概率收敛于某个常数。这个常数又是分布中未知参数的一个函数。即在不知道分布的情况下,利用样本矩构造方程(包含总体的未知参数),利用这些方程求得总体的未知参数。


传统的计量经济学估计方法,例如普通最小二乘法工具变量法和极大似然法等都存在自身的局限性。即其参数估计量必须在满足某些假设时,比如模型的随机误差项服从正态分布或某一已知分布时,才是可靠的估计量。(mark:离散选择模型的参数估计一般采用极大似然法)而GMM不需要知道随机误差项的准确分布信息,允许随机误差项存在异方差和序列相关,因而所得到的参数估计量比其他参数估计方法更有效。因此,GMM方法在模型参数估计中得到广泛应用。


自举法


自举法是在1个容量为n的原始样本中重复抽取一系列容量也是n的随机样本,并保证每次抽样中每一样本观察值被抽取的概率都是1/n(复置抽样)。这种方法可用来检查样本统计数θ的基本性质,估计θ的标准误和确定一定置信系数下θ的置信区间。
继承事业,薪火相传
返回列表