- UID
- 1029342
- 性别
- 男
|
四 蚁群算法的不足
本文实现的蚁群算法只是简单的大致模拟蚁群的觅食过程,真正的蚂蚁觅食过程远比这个复杂,比如增加蚂蚁搬运食物的距离和数量,蚂蚁在搬运食物发现更大的食物可能会丢弃原有食物,还可以增加蚂蚁搬运食物回蚁穴的最短路径的求解。同时需要注意的是,由于蚁群算法觅食的过程,蚁群算法可能会过早的收敛并陷入局部最优解。
JAVA实现蚁群算法
说明:信息素权重,路径权重和信息素蒸发率对最后的结果影响很大,需要微调。
目前发现2 / 5 / 0.5 能达到稍微让人满意的效果。本程序离完美的ACO还差很远,仅供参考。
本蚁群算法为AS算法。
用法:
1.new一个对象
ACOforTSP tsp = new ACPforTSP(tsp数据文件名,迭代次数,蚂蚁数量,信息素权重,路径权重,信息素蒸发率);
2.用go()方法运行
tsp.go();
ACOforTSP.java
___________________________________________________________________
import java.io.File;
import static java.lang.Math.pow;
import static java.lang.Math.sqrt;
import static java.lang.Math.random;
import java.util.HashMap;
import java.io.FileReader;
import java.io.BufferedReader;
public class ACOforTSP {
//城市的距离表
private double[][] distance;
//距离的倒数表
private double[][] heuristic;
//启发信息表
private double[][] pheromone;
//权重
private int alpha, beta;
//迭代的次数
private int iterationTimes;
//蚂蚁的数量
private int numbersOfAnt;
//蒸发率
private double rate;
ACOforTSP (String file, int iterationTimes, int numbersOfAnt, int alpha, int beta, double rate) {
//加载文件
this.initializeData(file);
//初始化参数
this.iterationTimes = iterationTimes;
//设置蚂蚁数量
this.numbersOfAnt = numbersOfAnt;
//设置权重
this.alpha = alpha;
this.beta = beta;
//设置蒸发率
this.rate = rate;
}
private void initializeData(String filename) {
//定义内部类
class City {
int no;
double x;
double y;
City(int no, double x, double y) {
this.no = no;
this.x = x;
this.y = y;
}
private double getDistance(City city) {
return sqrt(pow((x - city.x), 2) + pow((y - city.y), 2));
}
}
try {
//定义HashMap保存读取的坐标信息
HashMap<Integer, City> map = new HashMap<Integer, City>();
//读取文件
BufferedReader reader = new BufferedReader(new FileReader(new File(filename)));
for (String str = reader.readLine(); str != null; str = reader.readLine()) {
//将读到的信息保存入HashMap
if (str.matches("([0-9]+)(\\s*)([0-9]+)(.?)([0-9]*)(\\s*)([0-9]+)(.?)([0-9]*)")) {
String[] data = str.split("(\\s+)");
City city = new City(Integer.parseInt(data[0]),
Double.parseDouble(data[1]),
Double.parseDouble(data[2]));
map.put(city.no, city);
}
}
//分配距离矩阵存储空间
distance = new double[map.size() + 1][map.size() + 1];
//分配距离倒数矩阵存储空间
heuristic = new double[map.size() + 1][map.size() + 1];
//分配信息素矩阵存储空间
pheromone = new double[map.size() + 1][map.size() + 1];
for (int i = 1; i < map.size() + 1; i++) {
for (int j = 1; j < map.size() + 1; j++) {
//计算城市间的距离,并存入距离矩阵
distance[j] = map.get(i).getDistance(map.get(j));
//计算距离倒数,并存入距离倒数矩阵
heuristic[j] = 1 / distance[j];
//初始化信息素矩阵
pheromone[j] = 1;
}
}
} catch (Exception exception) {
System.out.println("初始化数据失败!");
}
}
class Ant {
//已访问城市列表
private boolean[] visited;
//访问顺序表
private int[] tour;
//已访问城市的个数
private int n;
//总的距离
private double total;
Ant() {
//给访问顺序表分配空间
tour = new int[distance.length+1];
//已存入城市数量为n,刚开始为0
n = 0;
//将起始城市1,放入访问结点顺序表第一项
tour[++n] = 1;
//给已访问城市结点分配空间
visited = new boolean[distance.length];
//第一个城市为出发城市,设置为已访问
visited[tour[n]] = true;
}
private int chooseCity() {
//用来random的随机数
double m = 0;
//获得当前所在的城市号放入j,如果和j相邻的城市没有被访问,那么加入m
for (int i = 1, j = tour[n]; i < pheromone.length; i++) {
if (!visited) {
m += pow(pheromone[j], alpha) * pow(heuristic[j], beta);
}
}
//保存随机到的数
double p = m * random();
//寻找被随机到的城市
double k = 0;
//保存找到的城市
int q = 0;
for (int i = 1, j = tour[n]; k < p; i++) {
if (!visited) {
k += pow(pheromone[j], alpha) * pow(heuristic[j], beta);
q = i;
}
}
return q;
}
private void constructSolution () {
while (n != (distance.length-1) ) {
//选取下一个城市
int p = chooseCity();
//计算总的距离
total += distance[tour[n]][p];
//将选取到的城市放入已访问列表
tour[++n] = p;
//将选取到的城市标记为已访问
visited[p] = true;
}
//回到起点
total += distance[tour[1]][tour[n]];
//将起点加入访问顺序表的最后
tour[++n] = tour[1];
}
private void releasePheromone() {
//释放信息素的大小
double t = 1/total;
//释放信息素
for (int i=1;i<tour.length-1;i++) {
pheromone[tour][tour[i+1]] += t;
pheromone[tour[i+1]][tour] += t;
}
}
}
|
|