首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

基于DSP的空间电压矢量PWM技术研究(2)

基于DSP的空间电压矢量PWM技术研究(2)

 4 基于TMS320F240的空间矢量脉宽调制技术的算法实现

  采用TMS320F240系统实现SVPWM具有精度高且实现方便的特点。TMS320F240系统的指令周期为50 ns,运算速度快;指令系统丰富灵活,指令效率高;有544k字片内RAM,16k字闪存(FlashEEPROM);3个全比较单元输出六路互补PWM[4]。在实现SVPWM的过程中,可以采用定时器连续加/减计数从而生成对称PWM。

  软件实现中,以Uα、Uβ作为输入,直流母线电压Vdc为参数,输出为三相对称PWM模式。程序编写包括主程序和一个定时器周期寄存器中断子程序,主程序根据电机控制策略计算出所需要的频率f,等待中断的产生。在定时器中,根据此时f和Uout的当前位置确定出下一个载波周期中Uout的位置,查转换模式表得到需要的两个作用矢量,并计算出它们的作用时间T1,T2。

  图4为SVPWM中断的子程序流程图。在进入中断前,系统配置、外设、I/O、GP定时器及各变量均已初始化完毕。

  下面对该流程图具体实现作一说明。
  (1)判断矢量Uout所处扇区

  (2)确定每个扇区中相应电压矢量的作用时间

  事实上,由前面的分析可知,由于三角函数具有对称性和周期性,两个相邻电压矢量的作用时间Tx、Tx±60只有三个数值,具体实现时,由于是对称PWM,故将Tx、Tx±60分成对称的两个部分,即下述的X,Y,Z:

  (3)确定开关顺序,为比较寄存器赋值
  定义电压矢量变化点距离时间零点的时间间隔分别为Ta、Tb、Tc,则有:

  由每个扇区的工作图,为每个扇区的比较寄存器赋值如表3:

  5 实验结果

  本文结合电动汽车电机控制系统,采用TMS320F240 DSP汇编语言编写了开环、载波频率为10 kHz、变频范围为0~100 Hz的SVPWM控制程序。逆变器逆变开关采用IGBT,直流电源为蓄电池,驱动的电机为三相异步电机,定子绕组星形接法,并带一它励直流发电机作为负载。程序每周期内只发生一次定时器周期中断,实时性好,且占用CPU较少,使CPU有很大能力去完成其它任务,实现更复杂、完善的电机控制。实验结果证明了该算法的正确性。图5、图6分别为控制器输出经过低通滤波后的相电压、线电压波形和实际测得的电流波形图。由图中可见,电压电流的正弦性很好,消除谐波明显,SVPWM是一种较为优化的PWM。

  6 结论

  本文详细阐述了空间电压矢量SVPWM技术的原理,推导了每个扇区开关矢量的作用时间,提出了用一半扇区的开关时间代替全部开关时间的算法,并在TI公司生产的DSP上实现。经过分析和实验,结果表明:

  (1)在相同的直流母线电压下,采用SVPWM方式有效地扩展了逆变器输出基波相电压的线性范围,其线性范围内的输出最大基波相电压幅值是传统SPWM输出最大基波相电压的1.15倍,能有效提高电源电压利用率。

  (2)只计算0~180°范围内(即3、1、5扇区)每个矢量的作用时间,再利用各扇区间矢量的关系及开关顺序,推出180°~360°矢量的作用时间,进而计算出所有扇区的矢量作用时间,是完全可能及正确的。

  (3)在高性能全数字化的矢量控制系统中,应用DSP处理器,如TI公司生产的TMS320F24x系列产品,由于DSP快速的运算能力和数据处理能力,空间电压矢量PWM技术实现更准确、方便,更接近理想正弦磁通控制。
继承事业,薪火相传
返回列表