首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

如何用C语言开发DSP嵌入式系统引言

如何用C语言开发DSP嵌入式系统引言

引言

  大家在开发嵌入式产品时首先会想到用控制器的汇编语言编写监控程序,主要原因是:①汇编语言生成的程序对应的二进制代码少,程序执行要比高级语言生成的程序快;②控制器刚问世时,没有相应的高级语言可供使用;③存储器的价格问题和寻址空间的限制。

  以上所述问题目前已基本解决,在这就不阐述了。实际情况是:在单片机的应用领域,开发者已开始使用C语言进行开发。大家发现用高级语言开发嵌入式产品是如此轻松,并且C语言程序编译后的二进制代码也非常短小精练。

  目前使用最多的数字信号处理器(DSP)是美国TI公司的TMS320家族,而工业控制上用得最多的又是TMS320F2XX系列。[url=link:TI%7C0]TI[/url]公司为每一个DSP芯片提供了汇编语言和C语言供开发者选用。本人一直使用C语言进行产品开发,而目前很少见到这方面的介绍、所以特撰此文,以TMS320F240为例,向各位同行推荐用C语言开发DSP嵌入式系统。

  1 DSP的C语言的特殊性

  大家在使用51系列C语言时已经注意到,控制器的C语言和PC机上使用的C有一个显著的特点:经常要对硬件操作,程序中有大量针对控制器内部资源进行操作的语句。所以,开发者要明白怎样用C语言来操纵控制器的内部资源,即怎样用C语句操作寄存器和内部存储器等。

  举个例子:在51汇编中我们写 MOV A,#20H;汇编程序能够识别A是指累加器;而在51的C程序中我们写ACC=32;,编译器能够识别ACC是指累加器而不是一般的变量。即每一个寄存器都有一个专有名字供开发者使用,它们定义在一个头文件reg51.h中,程序员只需在程序的开始部分用#include“reg51.h”语句将该文件包含进来即可。注意:这些寄存器的名字不能用作变量名。

  同样,在TMS320F240的C语言中也有一个头文件C240.H定义各个寄存器的名称,这里摘录几条语句进行介绍。

  比如:#define IMR((PORT)0x0004)

  #define XINTI_CR((PORT) 0x07070)

  IMR、XINT1_CR就对应两个寄存器,实际是寄存器的地址,用高级语言的说法是指针。我们也在程序的开始部分用#include“c240.h”语句将该文件包含进来。这样,在DSP的C语言中使用它们只需在前面加一个星号(*),例如,

  *IMR=0X1010;/*将十六进制数1010H赋给IMR寄存器*/

  *XINT1_CR=0X0A0B0;/*将十六进制数A0B0H赋给XINT1_CR寄存器*/

  开发者最好将c240.h这个文件打印出来,弄清楚各个寄存器的定义名称。至于不涉及硬件的语法和ANSI语法一样。需要注意的是,有些ANSI标准中的函数在DSP的编译器中不提供,读者可以参考DSP编译器的C语言手册。搞清楚了这些特殊性,由汇编语言转到C语言开发是很容易的事。当然,没有汇编语言编程基础的人同样可以用C语言开发DSP应用系统。

  有关嵌入式系统的C语言编程可参考《单片机与嵌入式系统应用》2001年1~6期《嵌入式C编程技术》,本文不作讨论。下面只针对以TMS320F240芯片为处理器的嵌入式C语言编程进行阐述,希望能够指导读者进行具体操作。

  2 TMS320F240芯片的C语言开发过程

  简单地说,整个过程包括以下5个步骤:

  ①编辑C语言源程序;

  ②编译源程序(注意编译参数);

  ③链接目标文件(注意用CMD文件);

  ④在线仿真;

  ⑤固化程序。

  2.1源程序的编辑

  可以用任何一个编辑器书写源程序,如EDIT。NOTEPAD等,最后以.C为后缀存盘。源代码可以写在一个C文件中,也可写在多个C文件中;有些预定义变量和函数原型声明可以集中放在一个头文件中。

  注意事项:不要忘记在C程序的前面用 #in-clude “c240.h”将寄存器定义文件包括进来。

  2.2源程序的编译

  源程序编辑好后可以用DSPCL编译程序进行编译,生成OBJ文件。

  使用格式:DSPCL源文件名 参数

  例如: DSPCL EX1.C-V2XX-GK-MN

  常用参数的意义:

  V2XX——表示C编译器选择处理器2XX系列;

  GK——保留编译生成的汇编文件(.ASM文件);

  MN——进行正常优化。

  其它参数请参考DSP编译器的手册。如果有多个源文件分别编译,每一个源文件经编译后产生一个OBJ文件和ASM文件。
  2.3 目标文件的链接

  2.3.1 TI公司的COFF文件格式

  TI公司新的汇编器和编译器创建的目标文件采用COFF(Common Object File Format)的目标文件格式。采用COFF格式有利于模块化编程,为管理代码段和目标系统存储器提供更加有力和灵活的方法。基于COFF格式编写汇编程序或C语言程序时,不必为程序代码和变量指定目标地址;为程序编写和程序移植提供了极大的方便。

  COFF格式的基本思想是:鼓励程序员在用汇编语言或C语言编程时运用代码块和数据块的概念。这种块称为SECTION,是目标文件中的最小单位。

  所有的块分为两大类:已初始化块和未初始化块。已初始化块包含程序代码和数据,未初始化块是为未初始化的数据在存储器中的保留块。C编译器对C程序编译后产生已初始化块和未初始化块,已初始化块如.text块、.const块、.cinit块;未初始化块如.bss块。

  举个例子,当程序员用C语句float data[100];定义一个数组时,不需要指定这100个数组元素的具体位置,编译器会在数据区预留所需空间。到链接时链接器会具体定位。

  2.3.2 链接器对块的处理

  链接器对块的处理有两个功能:其一,将COFF目标文件中的块用来建立程序块和数据块,并将这些块组合成可以被DSP芯片执行的COFF输出模块;其二,链接器为输出块指定存储位置。

  链接器提供两个命令实现上述功能:MEMORY和SECTIONS。MEMORY命令定义目标系统的存储器,程序员可以定义每一块存储器并指定起始地址和长度;SECTIONS命令用来定义输入块的组合和输出块在存储器中的存放位置。若不用MEMORY和SECTIONS命令,链接器采用缺省的分配算法。推荐使用这两个命令,但要注意这两个命令在CMD文件(链接器命令文件)中使用。

  下面分析一个TMS320F240芯片的典型CMD文件。(假设文件名 EX1.CMD。)

  (1)CMD文件的构成及其详细解释

  BOOT.OBJ /*F240的中断矢量表,参见后面的说明*/

  EX1.OBJ /*源程序编译后对应的目标文件*/

  /*若程序有多个目标文件,一块写在这里*/

  -STACK 0X400 /*设定系统堆栈*/

  -C /*ROM初始化*/

  -O EX1.OUT /*输出的文件名*/

  -M EX1.MAP /*输出映像文件名*/

  -L RTS2XX.LIB /*涟接RTS2XX.LIB库*/

  MEMORY /*MEMORY命令规定系统的存储器配置*/

  {

  PAGEO:ROM0:origin=0000h,length=003fh

  /*FLASH ROM*/

  PAGE0:ROM1:origin=0040h,length=0200h

  /*FLASH ROM*/

  PAGEO:ROM2:origin=0240h,length=3000h

  /*FLASH ROM*/

  PAGE1:RAM_B2:origin=0060h,length=0020h

  /*内部RAMB2*/

  PAGE1:RAM_B1:origin=0300h,length=0100h

  /*内部RAM B1*/

  PAGE1:RAM_B0:origin=0100h,length=0100h

  /*内部RAM B0*/

  PAGE1:RAM_EX:origin=0d000h,length=2800h

  /*外部扩展RAM*/

  }

  SECTIONS /*SECTIONS命令规定了程序中块的具体分配方法*/

  {

  .vectors:load=ROM0 /*规定矢量表的存放位置*/

  .cinit:load=rom1 /*C初始化表的存放位置*/

  .text: load=ROM2 /*系统程序的存放位置*/

  .bSS load=RAM_B0 /*未初始化数据的存放位置*/

  .const load=RAM_B1 *已初始化数据的存放位置*/

  }
继承事业,薪火相传
返回列表