首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

MEMS加速度传感器的自动校准平台(2)

MEMS加速度传感器的自动校准平台(2)

图中的3个顶点O、A、B分别代表3个支撑轴,为了使基座能够适用于不同的环境,设定支脚O的高度为手动可调。传感器在安装时需保证其X轴与OA边平行,Y轴与OA上的高BH平行。当固定了O点的高度后,调节A、B两处,使平台达到水平。为了便于实验,将模型进一步理想化,使点H与O重合。平台调平的实质是将两条相交的直线分别调到水平。
假设平台为刚性结构,加速度传感器的精度为常数,且在X与Y两个方向上的倾角分别为α和β,两轴之间的夹角为θ,则整个平台的水平度γ可表示为:


根据上面的公式,只有当两轴的夹角为90°时,系统在调平过程中才没有耦合,水平度θ才有最小值。
若两轴上的控制精度为±δ,则系统调平的水平误差。由于选择的是双轴加速度传感器,它的两个测量轴相互垂直,即θ=90°,故水平调节误差。即如果整个平台的水平度要求为0.1°,则X轴、Y轴上的控制精度就是。
3 系统硬件设计
3.1 传感器硬件连接
加速度传感器以I2C总线标准输出数据,由于本身即为数字量,因而节省了模/数转换所需的硬件,但I2C接口为开漏输出结构,必须接上拉电阻后才能输出高电平。其硬件连接如图3所示,8脚上的电源电压需稳定在2.7~3.6 V,5脚上的I2C辅助电压标称值为1.8 V,但只要低于8脚上的电压值亦可正常工作,电源与地之间通过一个0.1μF电容滤波。由于采用的单片机STC10F08没有I2C接口,故将其通用I/0接口P1.0和P1.1模拟成I2C接口的SDA和SCL。

3.2 支脚的设计
当前广泛使用的支脚类型包括液压式和机械式两种。液压型的支脚虽然输出功率较大,但是也存在明显的缺点:液压油本身可压缩,液压油粘滞系数随温度变化,液体容易泄漏,液压油可燃,设备不能自锁,检修困难等。机械支脚虽然惯性较大,但适应性强并可以实现机械锁紧。考虑到现场环境可能比较恶劣,本文采用了机械式调平方法,系统结构示意图如图4所示。


将电机轴设计为中空的螺母式结构,支脚就是旋人其中的螺杆。平台的支撑架由两部分组成:电机和台面构成的整体、旋在电机轴内的螺杆。螺母及其相连的内筒固定不动而螺杆旋转,带动电机以及上面的平台一起作直线运动。这种螺旋传动的方式将旋转运动转化为直线运动,从而实现平台的升降,并且能在任何高度自锁。
如图4所示,单片机收到加速度传感器送来的倾角信息后,在实时显示的同时按照预先设定的控制算法,控制步进电机的转动。电机轴的正反转动转化为支撑轴的上升和下降,从而实现对倾斜平面的调平。
3.3 系统软件设计
自动校准平台的程序流程如图5所示,其中最主要的部分是角度信号的采集、数据的进一步处理以及电机的自动控制。信号采集环节主要是完成传感器与单片机之间的I2C串口通信;数据处理环节包括正负角度值修正、传感器输出的线性化处理以及软件滤波;电机控制环节包括快慢档调节、零点锁定和PID控制


其中,电机控制与平台调平直接相关。系统根据检测到的倾角大小,在不同的倾角范围采取不同的调平速度和调平精度。倾角较大时调平精度较粗,电机一次转动的步数较多,支撑轴的伸出速度越快,调平速度就越快;倾角小于低速阈值时,电机转动频率降低,支撑轴的伸出速度变慢,使平台形变和支腿伸出速度过快所带来的不良影响得以减小,从而在整体上兼顾了调平速度和调平精度。
从实际应用出发,考虑到当基座调平完成后,平台上的设备便开始工作,如果该设备在运行过程中产生振动,则必然导致基座不稳定。若不加任何防范措施,其结果就是平台上设备工作的同时基座继续调平,这对于设备的正常运行是非常不利的。特别当其应用于吊车、火炮等有较高稳定性要求的调平场合时,上述情况是非常危险的。因此,在原先的基础上增设了调平完成后的自锁定功能,以及手动解锁按钮。
整个调平过程是一个离散化的动态趋近过程。在系统跟踪倾角状态的每个周期,平台都逐步逼近水平位置,直至与水平面的差别小于停机阈值。此时电机停转,平台锁定,系统默认一次校准任务完成。在下一次基座调平任务来临之前,需要手动操作解锁按钮,以唤醒系统工作。从系统动态调平的思想中可以看出,两台电机的摆放位置并不是固定的,只要3个支撑点不共线,平台就可以实现自动调平
为使系统更加稳定、准确的完成调平工作,采用了基于PID的反馈控制算法。传统的PID控制结构如图6所示,虚线框内是PID控制器,R(s)为输入量,C(s)表示复杂系统输出,B(s)是反馈量,控制偏差信号E(s)=R(s)-B(s),G。(s)表示被控过程,D(s)为外界干扰,N(s)是传感器噪声。
返回列表