首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 基于FPGA的无线射频读卡器开发与设计
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于FPGA的无线射频读卡器开发与设计
发短消息
加为好友
yuyang911220
当前离线
UID
1029342
帖子
9914
精华
0
积分
4959
阅读权限
90
在线时间
286 小时
注册时间
2014-5-22
最后登录
2017-7-24
论坛元老
UID
1029342
性别
男
1
#
打印
字体大小:
t
T
yuyang911220
发表于 2016-12-25 15:16
|
只看该作者
基于FPGA的无线射频读卡器开发与设计
读卡器
,
条形码
,
识别码
,
开发
,
无线
本帖最后由 yuyang911220 于 2017-1-3 15:48 编辑
与其他常用的自动识别技术如条形码和磁条一样,无线射频识别(RFID)技术也是一种自动识别技术。每一个目标对象在射频读卡器中对应唯一的电子识别码(UID),或者“电子标签”。标签附着在物体上标识目标对象,如纸箱、货盘或包装箱等。射频读卡器(应答器)从电子标签上读取识别码。
基本的RFID系统由三部分组成:天线或线圈、带RFID解码器的收发器和RFID电子标签(每个标签具有唯一的电子识别码)。表1显示了常用的四个RFID频率及其潜在的应用领域。其中,目前商业上应用最广的是超高频(UHF),它在供应链管理中有可能得到广泛的应用。
EPC电子标签
EPC表示电子产品代码,是RFID电子标签的标准,它包括电子标签的数据内容和无线通信协议。EPC标准将条形码规范中的数据信息标准与ANSI或其他标准化组织(802.11b)制定的无线数据
通信标准
结合在一起。目前应用在供应链管理中的EPC标准,属于第二代EPC Class-1标准。
Class-1标签在出厂时已经被写入,但也是可以现场下载。通常情况下,一旦标签已被写入,内存即被锁定不可再次写入信息。Class-1标签采用常规的分组传输协议—读卡器发送包含相关命令和数据的数据包,标签随后做出响应。
恶劣的读卡器应用环境
RFID
的应用环境可能非常恶劣。信道的工作频率是免许可的工业、科技与医药(ISM)频带。此频带中的
RFID
读卡器受到来自无绳电话、无线耳麦、无线数据网络以及其他临近读卡器的干扰。必须将每一读卡器的RF接收器前端
设计
为能够抵御强干扰信号,避免产生可导致询问错误的失真。接收器的噪声必须保持在较低的水平,以便具备足够的动态范围,从而以无错方式检测出低电平标签响应信号。
图1中所示的读卡器RF射频收发器,是一个成熟的设计,能够在存在大量干扰源的恶劣环境中稳定地工作。发射器和接收器都带有一个高动态范围直接转换调制器和解调器,因此最大限度地提高了稳定性并降低了成本。
实用和可靠的射频接收器设计
接收器的核心是Linear公司的LT5516,这是一种高度集成化的直接转换正交解调器,芯片上提供了一个精确正交移相器(0度至90度)。来自天线的信号在通过射频滤波器之后,通过一个不平衡变压器直接输入到解调器输入端口。由于LT5516的噪声系数很低,在不需要低噪放大器(LNA)的情况下,仍能保持其21.5dBm IIP3和9.7dB P1dB的性能。
在接收数据时,读卡器发射连续载波(未调制),以便为标签提供电源。在收到请求后,电子标签通过对载波进行调幅,响应一个码流。所采用的调制方式为幅移键控(ASK)或者反相-幅移键控键控(PR-ASK)。解调器带有两个正交移相检出式输出端口,因此具备天然的分集接收功能。如果由于多路或相位取消导致某个通道无法接收信号,另一条通道(移相90度)就可接收较强的信号,反之亦然。这样,整体接收可靠性就得以提高。
一旦解调完成,即可将I(相内)和Q(正交相位)差分输出信号以AC方式耦合至一个运算放大器(被配置为一个差分放大器),随后被转换为单端输出信号。这个时候应将高通角频率设置为5KHz,低于接收数据流的最小信号频率,高于最大多普勒频率(可能被运动标签采用),同时保持高于电力线频率(60Hz)。这样,输出信号就能利用被配置为四阶低通的LT1568顺利穿过低通滤波器。低通角频率应被设置为5MHz,以便最大码流信号穿过滤波器,达到基带。
基带信号然后被一个双路低功耗模数转换器(LTC2291,分辨率为12位)进行数字化处理。由于标签码流的带宽为5KHz至5MHz,LTC2291能够以25MSps的速率进行充分的采样,从而精确地捕获解调信号。在需要的时候,还可在基带DSP中实现额外的数字滤波。这样,接收器就能具备最大的逻辑阈值设置灵活性,该设置可由基带处理器以数字化方式执行。
基带任务和数字化射频信道化处理,可提高用全FPGA解决方案实现的吸引力和集成度。
高动态范围射频发射器设计
发射器集成了一个镜像抑制直接转换式调制器。LT5568具备很高的线性度和较低的背景噪声,因此能够为所发射的信号提供出色的动态范围性能。调制器能够从数模转换器(DAC)接收正交式基带I和Q信号,然后直接调制至900MHz发射频率。
在内部,LO(本地振荡器)被精确正交移相器分割。经调制的射频信号被合并为一个单端、单边带射频输出信号(镜像被抑制了46dBc)。此外,调制器还带有匹配的I和Q混合器,从而最大限度地抑制了LO载波信号(至-43dBm)。
复合调制电路具备出色的邻道功率比(ACPR),有助于满足发射频率屏蔽要求。例如,当调制器射频输出电平为-8dBm时,ACPR指标优于-60dBc。由于具备更出色的ACPR性能,信号可被放大至许可的1w功率(在美国为+30dBm),或者放大至2w,以符合欧盟规范。在上述两种情况下,重要的是保持电平固定,因为该电平用于向电子标签提供电源,并最大化读卡距离。LTC5505型射频功率检测器的内部温度补偿功能,可准确地测定功率,提供稳定的反馈信号,以调节射频功率放大器的输出功率。
基带处理和网络接口
在基带频率上,
FPGA
执行发送至DAC和来自模数转换器(ADC)的波形的信道化任务。这一过程也被称为数字中频处理,涉及滤波、增益控制、频率转换和采样率变化等。
FPGA
甚至可以并行处理多个信道。
图2显示了一个射频读卡器的架构。其他基带处理任务包括:
收藏
分享
评分
继承事业,薪火相传
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议