Σ-Δ转换器要以速率换取分辨率。由于产生一个最终采样需要采样很多次(至少是16倍,一般会更多),
这就要求Σ-Δ调制器的内部模拟电路的工作速率要比最终的数据速率快很多。
数字抽取滤波器的设计也是一个挑战,并要消耗相当大的硅片面积。
在不远的将来,速度最高的高分辨率Σ-Δ转换器的带宽将不大可能高出几兆赫兹很多。
总结综上所述,SAR ADC的主要优点是低功耗、高分辨率、高精度、以及小尺寸。
由于这些优势,SAR ADC常常与其它更大的功能集成在一起。
SAR结构的主要局限是采样速率较低,并且其中的各个单元(如DAC和比较器),需要达到与整体系统相当的精度。
The ADC in STM32x microcontrollers uses the SAR (successive approximation register) principle,
by which the conversion is performed in several steps.
The number of conversion steps is equal to the number of bits in the ADC converter.
Each step is driven by the ADC clock.
Each ADC clock produces one bit from result to output.
ADC internal design is a switched-capacitor type.
The following figures (Figure 1 to Figure 6) explain the principle of ADC operation.
The example given below shows only the first steps of approximation
but the process continues till the LSB is reached.