首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

基于malloc与free函数的实现代码及分析(2)

基于malloc与free函数的实现代码及分析(2)

malloc()第一次调用时建立一个退化链表base,只有一个大小是0的空间,并指向它自己。freep用于标识空闲链表的某个元素,每次查找时可能发生变化;中间的查找和分配过程是基本的链表操作,在空闲链表中不存在合适大小的空闲空间时调用morecore()获得更多内存空间;最后的返回值是空闲空间的首地址,即Header之后的地址,这个接口与库函数一致。
复制代码 代码如下:
morecore()
#define NALLOC 1024    /* minimum #units to request */
static Header *morecore(unsigned nu)
{
    char *cp;
    Header *up;
    if(nu < NALLOC)
        nu = NALLOC;
    cp = sbrk(nu * sizeof(Header));
    if(cp == (char *)-1)    /* no space at all*/
        return NULL;
    up = (Header *)cp;
    up->s.size = nu;
    free((void *)(up+1));
    return freep;
}
  morecore()从系统申请更多的可用空间,并加入。由于调用了sbrk(),系统开销比较大,为避免morecore()本身的调用次数,设定了一个NALLOC,如果每次申请的空间小于NALLOC,就申请NALLOC大小的空间,使得后续malloc()不必每次都需要调用morecore()。对于sbrk(),在后面会有介绍。
  这里有个让人惊讶的地方:malloc()调用了morecore(),morecore()又调用了free()!第一次看到这里时可能会觉得不可思议,因为按照惯性思维,malloc()和free()似乎应该是相互分开的,各司其职啊?但请再思考一下,free()是把空闲链表进行扩充,而malloc()在空闲链表不足时,从系统申请到更多内存空间后,也要先把它们转化成空闲链表的一部分,再进行利用。这样,malloc()调用free()完成后面的工作也是顺理成章了。根据这个思想,后面是free()的实现。在此之前,还有几个morecore()自身的细节:
  1.如果系统也没有空间可以分配,sbrk()返回-1。cp是char *类型,在有的机器上char无符号,这里需要一次强制类型转换。
  2.morecore()调用的返回值看上去比较奇怪,别担心,freep会在free()中修改的。使用这个返回值也是为了在malloc()里的判断、p = freep的再次赋值的语句能够紧凑。
复制代码 代码如下:
free()
void free(void *ap)
{
    Header *bp,*p;
    bp = (Header *)ap -1; /* point to block header */
    for(p=freep;!(bp>p && bp< p->s.ptr);p=p->s.ptr)
        if(p>=p->s.ptr && (bp>p || bp<p->s.ptr))
            break;    /* freed block at start or end of arena*/
    if (bp+bp->s.size==p->s.ptr) {    /* join to upper nbr */
        bp->s.size += p->s.ptr->s.size;
        bp->s.ptr = p->s.ptr->s.ptr;
    } else
        bp->s.ptr = p->s.ptr;
    if (p+p->s.size == bp) {     /* join to lower nbr */
        p->s.size += bp->s.size;
        p->s.ptr = bp->s.ptr;
    } else
        p->s.ptr = bp;
    freep = p;
}
  free()首先定位要释放的ap对应的bp与空闲链表的相对位置,找到它的的最近的上一个和下一个空闲空间,或是当它在整个空闲空间的前面或后面时找到空闲链表的首尾元素。注意,由于malloc()的分配方式和free()的回收时的合并方式(下文马上要提到),可以保证整个空闲空间的链表总是从低地址逐个升高,在最高地址的空闲空间回指向低地址第一个空闲空间。
  定位后,根据要释放的空间与附近空间的相邻性,进行合并,也即修改对应空间的Header。两个if并列可以使得bp可以同时与高地址和低地址空闲空间结合(如果都相邻),或者进行二者之一的合并,或者不合并。
  完成了这三部分代码后(注意放到同一源文件中,sbrk()需要#include <unistd.h>),就可以使用了。当然要注意,命名和stdlib.h中的同名函数是冲突的,可以自行改名。
  第一次审视源码,会发现很多实现可能原先并没有想到:Header的结构和对齐填充、空间的取整、链表的操作和初始化(边界情况)、malloc()对free()的调用、由malloc()和free()暗中保证的链表地址有序等等,确实很值得玩味。另外再附上前文中提到的两个问题还有一些补充问题的简单思考:
1.Header与空闲空间相剥离,Header中包含一个指向其空闲空间的指针
  这样做未必不可,相应地算法需要改动。同时,由于Header和空闲空间不再相邻,sbrk()获得的空间也应该包含Header的部分,内存的分布可能会更加琐碎。当然,这也可能带来好处,即用其他数据结构对链表进行管理,比如按大小进行hash,这样查找起来更快。
2.关于sbrk()
  sbrk()也是库函数,它能使堆往栈的方向增长,具体可以参考:brk(), sbrk() 用法详解。
3.可以改进的方
  空闲空间的寻找是线性的,查找过程在内存分配中可以看作是循环首次适应算法,在某些情况下可能很慢;如果再建立一个数据结构,如hash表,对不同大小的空间进行索引,肯定可以加快查找本身,并且能实现一些算法,比如最佳匹配。但查找加快的代价是,修改这个索引会占用额外的时间,这是需要权衡的。
  morecore()中的最小分配空间是宏定义,在实际使用中完全可以作为参数传递,根据需要设定最小分配下限。
继承事业,薪火相传
返回列表