首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

压缩感知介绍

压缩感知介绍

压缩感知介绍压缩感知(Compressive Sensing,CS),有时也叫成Compressive Sampling。相对于传统的奈奎斯特采样定理——要求采样频率必须是信号最高频率的两倍或两倍以上(这就要求信号是带限信号,通常在采样前使用低通滤波器使信号带限),压缩感知则利用数据的冗余特性,只采集少量的样本还原原始数据。
这所谓的冗余特性,借助MLSS2014马毅老师的课件上的例子来说明,

因为自然界的数据都存在局部低维结构、周期性、对称性等,因此,传统的固定采样率的采样方法必然存在信息冗余。由于信息冗余的存在,我们就知道有数据压缩那么一门学科。既然这样,为什么要把冗余的数据也采进来,再进行压缩呢,能不能不把冗余的数据采集进来?
压缩感知的思路就是:在采集的过程中就对数据进行了压缩,而且这种压缩能保证不失真(低失真)的恢复原始数据,这与传统的先2倍频率采集信号→存储→再压缩的方式不同,可以降低采集信号的存储空间和计算量。
好了,那么就来了解一下压缩感知的具体模型。
1. 稀疏表示使用压缩感知理论首先要求信号能表示为稀疏信号,如x=[1 0 0 0 1 0],其中只有2个1,可认为是稀疏的。我们将信号通过一个矩阵映射到稀疏空间,

设信号x为N维,即,则为NxN维稀疏表达矩阵,s即是将x进行稀疏表示后的Nx1维向量,其中大部分元素值为0。稀疏表示的原理就是通过线性空间映射,将信号在稀疏空间进行表示。
比如,信号

在时域是非稀疏的,但做傅里叶变换表示成频域后,只有少数几个点为非0(如下图)。则该信号的时域空间为非稀疏,频域空间为稀疏空间,组成的矩阵。一般为正交矩阵。

若稀疏表示后的结果s中只有k个值不为0,则称x的稀疏表示为k-Sparse。上图对x的频域稀疏表示就是2-Sparse。
2. 感知测量压缩感知的目的是在采集信号时就对数据进行压缩,大牛们的思路集中到了数据采集上——既然要压缩,还不如就从大量的传感器中只使用其中很少的一部分传感器,采集少量的冗余度低的数据。这就是感知测量的通俗的说法,用表达式表示

其中的x就是稀疏表示中的信号,为MxN维的感知矩阵(M表示测量信号的维度),y则表示M(M远小于N才有意义)个传感器的直接测量,因此维度为Mx1。
将稀疏表示过程和感知测量过程综合起来:
返回列表