通用线程:POSIX 线程详解,第 3 部分 使用条件变量提高效率-3
 
- UID
- 1066743
|

通用线程:POSIX 线程详解,第 3 部分 使用条件变量提高效率-3
队列需要队列是出于两个原因。首先,需要队列来保存工作作业。还需要可用于跟踪已终止线程的数据结构。还记得前几篇文章(请参阅本文结尾处的 )中,我曾提到过需要使用带有特定进程标识的 pthread_join 吗?使用“清除队列”(称作 "cq")可以解决无法等待 任何已终止线程的问题(稍后将详细讨论这个问题)。以下是标准队列代码。将此代码保存到文件 queue.h 和 queue.c:
queue.h1
2
3
4
5
6
7
8
9
10
11
12
13
14
| /* queue.h
** Copyright 2000 Daniel Robbins, Gentoo Technologies, Inc.
** Author: Daniel Robbins
** Date: 16 Jun 2000
*/
typedef struct node {
struct node *next;
} node;
typedef struct queue {
node *head, *tail;
} queue;
void queue_init(queue *myroot);
void queue_put(queue *myroot, node *mynode);
node *queue_get(queue *myroot);
|
queue.c1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
| /* queue.c
** Copyright 2000 Daniel Robbins, Gentoo Technologies, Inc.
** Author: Daniel Robbins
** Date: 16 Jun 2000
**
** This set of queue functions was originally thread-aware. I
** redesigned the code to make this set of queue routines
** thread-ignorant (just a generic, boring yet very fast set of queue
** routines). Why the change? Because it makes more sense to have
** the thread support as an optional add-on. Consider a situation
** where you want to add 5 nodes to the queue. With the
** thread-enabled version, each call to queue_put() would
** automatically lock and unlock the queue mutex 5 times -- that's a
** lot of unnecessary overhead. However, by moving the thread stuff
** out of the queue routines, the caller can lock the mutex once at
** the beginning, then insert 5 items, and then unlock at the end.
** Moving the lock/unlock code out of the queue functions allows for
** optimizations that aren't possible otherwise. It also makes this
** code useful for non-threaded applications.
**
** We can easily thread-enable this data structure by using the
** data_control type defined in control.c and control.h. */
#include <stdio.h>
#include "queue.h"
void queue_init(queue *myroot) {
myroot->head=NULL;
myroot->tail=NULL;
}
void queue_put(queue *myroot,node *mynode) {
mynode->next=NULL;
if (myroot->tail!=NULL)
myroot->tail->next=mynode;
myroot->tail=mynode;
if (myroot->:head==NULL)
myroot->head=mynode;
}
node *queue_get(queue *myroot) {
//get from root
node *mynode;
mynode=myroot->head;
if (myroot->head!=NULL)
myroot->head=myroot->head->next;
return mynode;
}
|
data_control 代码我编写的并不是线程安全的队列例程,事实上我创建了一个“数据包装”或“控制”结构,它可以是任何线程支持的数据结构。看一下 control.h:
control.h1
2
3
4
5
6
| #include
typedef struct data_control {
pthread_mutex_t mutex;
pthread_cond_t cond;
int active;
} data_control;
|
现在您看到了 data_control 结构定义,以下是它的视觉表示:
所使用的 data_control 结构 图像中的锁代表互斥对象,它允许对数据结构进行互斥访问。黄色的星代表条件变量,它可以睡眠,直到所讨论的数据结构改变为止。on/off 开关表示整数 "active",它告诉线程此数据是否是活动的。在代码中,我使用整数 active 作为标志,告诉工作队列何时应该关闭。以下是 control.c:
control.c1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
| /* control.c
** Copyright 2000 Daniel Robbins, Gentoo Technologies, Inc.
** Author: Daniel Robbins
** Date: 16 Jun 2000
**
** These routines provide an easy way to make any type of
** data-structure thread-aware. Simply associate a data_control
** structure with the data structure (by creating a new struct, for
** example). Then, simply lock and unlock the mutex, or
** wait/signal/broadcast on the condition variable in the data_control
** structure as needed.
**
** data_control structs contain an int called "active". This int is
** intended to be used for a specific kind of multithreaded design,
** where each thread checks the state of "active" every time it locks
** the mutex. If active is 0, the thread knows that instead of doing
** its normal routine, it should stop itself. If active is 1, it
** should continue as normal. So, by setting active to 0, a
** controlling thread can easily inform a thread work crew to shut
** down instead of processing new jobs. Use the control_activate()
** and control_deactivate() functions, which will also broadcast on
** the data_control struct's condition variable, so that all threads
** stuck in pthread_cond_wait() will wake up, have an opportunity to
** notice the change, and then terminate.
*/
#include "control.h"
int control_init(data_control *mycontrol) {
int mystatus;
if (pthread_mutex_init(&(mycontrol->mutex),NULL))
return 1;
if (pthread_cond_init(&(mycontrol->cond),NULL))
return 1;
mycontrol->active=0;
return 0;
}
int control_destroy(data_control *mycontrol) {
int mystatus;
if (pthread_cond_destroy(&(mycontrol->cond)))
return 1;
if (pthread_cond_destroy(&(mycontrol->cond)))
return 1;
mycontrol->active=0;
return 0;
}
int control_activate(data_control *mycontrol) {
int mystatus;
if (pthread_mutex_lock(&(mycontrol->mutex)))
return 0;
mycontrol->active=1;
pthread_mutex_unlock(&(mycontrol->mutex));
pthread_cond_broadcast(&(mycontrol->cond));
return 1;
}
int control_deactivate(data_control *mycontrol) {
int mystatus;
if (pthread_mutex_lock(&(mycontrol->mutex)))
return 0;
mycontrol->active=0;
pthread_mutex_unlock(&(mycontrol->mutex));
pthread_cond_broadcast(&(mycontrol->cond));
return 1;
}
|
|
|
|
|
|
|