首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

MySQL索引原理及慢查询优化(1)

MySQL索引原理及慢查询优化(1)

一个慢查询引发的思考[url=][/url]
select   count(*) from   task where   status=2    and operator_id=20839    and operate_time>1371169729    and operate_time<1371174603    and type=2;[url=][/url]

系统使用者反应有一个功能越来越慢,于是工程师找到了上面的SQL。
并且兴致冲冲的找到了我,“这个SQL需要优化,给我把每个字段都加上索引”
我很惊讶,问道“为什么需要每个字段都加上索引?”
“把查询的字段都加上索引会更快”工程师信心满满
“这种情况完全可以建一个联合索引,因为是最左前缀匹配,所以operate_time需要放到最后,而且还需要把其他相关的查询都拿来,需要做一个综合评估。”
“联合索引?最左前缀匹配?综合评估?”工程师不禁陷入了沉思。
多数情况下,我们知道索引能够提高查询效率,但应该如何建立索引?索引的顺序如何?许多人却只知道大概。其实理解这些概念并不难,而且索引的原理远没有想象的那么复杂。
MySQL索引原理##索引目的
索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql。如果没有索引,那么你可能需要把所有单词看一遍才能找到你想要的,如果我想找到m开头的单词呢?或者ze开头的单词呢?是不是觉得如果没有索引,这个事情根本无法完成?
##索引原理
除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。
数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段......这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。
###磁盘IO与预读
前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供大家参考:

考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。
###索引的数据结构
前面讲了生活中索引的例子,索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生。
###详解b+树

如上图,是一颗b+树,关于b+树的定义可以参见 ,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。
###b+树的查找过程
如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。
###b+树性质
1.通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。
2.当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。
返回列表