首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

开关电源设计技巧连载二十:开关变压器的工作原理

开关电源设计技巧连载二十:开关变压器的工作原理

开关电源设计技巧连载二十:开关变压器的工作原理

2-1-1-1.脉冲序列对单激式开关电源变压器铁芯的磁化


为了简单起见,我们把单激式变压器开关电源等效成如图2-1所示电路,其中我们把直流输入电压通过控制开关通、断的作用,看成是一序列直流脉冲电压,即单极性脉冲电压,直接给开关变压器供电。这里我们特别把变压器称为开关变压器,以表示图2-1所示电路与一般电源变压器电路在工作原理方面还有区别的。

在一般的电源变压器电路中,当电源变压器两端的输入电压为0时,表示输入端是短路的,因为电源内阻可以看作为0;而在开关变压器电路中,当开关变压器两端的输入电压为0时,表示输入端是开路的,因为电源内阻可以看作为无限大。


在图2-1中,当一组序列号为1、2、3、…的直流脉冲电压分别加到开关变压器初级线圈a、b两端时,在开关变压器的初级线圈中就会有励磁电流流过,同时,在开关变压器的铁芯中就会产生磁场,在磁场强度为H的磁场作用下又会产生磁通密度为B的磁力线通量,简称磁通,用“ ”表示。

在变压器铁芯中,磁通密度B或磁通 受磁场强度H的作用而发生变化的过程,称为磁化过程;因此,用来描述磁通密度B与磁场强度H之间对应变化的关系曲线,人们都把它称为磁化曲线。图2-2是单激式开关变压器铁芯被磁化时,磁通密度B与磁场强度H之间对应变化的关系曲线图。


在分析变压器铁芯的磁化过程中,经常使用磁通密度和磁感应强度这两个名称,前面已经提到,这两个名称在本质上没区别的,可以互相通用,不同场合使用不同名称,只是为了使用方便。

如果开关变压器的铁芯在这之前从来没有被任何磁场磁化过,并且开关变压器的伏秒容量足够大,那么,当第一个直流脉冲电压加到变压器初级线圈a、b两端时,在变压器初级线圈中将有励磁电流流过,并在变压器铁芯中产生磁场。

在磁场强度H的作用下,变压器铁芯中的磁感应强度B将会按图2-2中0-1磁化曲线上升;当第一个直流脉冲电压将要结束时,磁场强度达到第一个最大值Hm1,同时磁感应强度将会被磁场强度磁化到第一个最大值Bm1 ;由此产生一个磁感应强度增量ΔB,ΔB = Bm1- 0 。磁感应强度增加,表示流过变压器初级线圈中的励磁电流产生的磁场在对变压器铁芯进行充磁。

当序列脉冲电压加到开关变压器初级线圈a、b两端时,在变压器铁芯中会产生的磁场,这磁场完全是由流过变压器初级线圈的励磁电流产生的,流过变压器初级线圈的励磁电流为:

(2-8)式中, 为流过变压器初级线圈的励磁电流,E为加到变压器初级线圈两端的电压,L1为变压器初级线圈的电感量,t为时间, 为初始电流,即t = 0时流过变压器初级线圈的励磁电流。

如果脉冲序列的占空系数(占空比)满足磁化电流在后一个脉冲进入前下降为零,即开关电源工作于电流临界连续或不连续状态。

当第一个直流脉冲结束以后,由于开关变压器初级线圈开路,虽然流过变压器初级线圈中的励磁电流下降到零,但磁场强度H不会马上下降到零;此时,变压器的初、次级线圈会同时产生反电动势,由于反电动势的作用,在变压器的初、次级线圈回路中都会有电流流过,这种回路电流属于感应电流,或称感生电流。

当第一个直流脉冲结束时,如果开关变压器初级线圈不开路,反电动势会对输入电压进行反充电;如果开关变压器初级线圈是开路的,反电动势会对初级线圈中的分布电容进行充放电,从而会在初级线圈内部产生高频振荡。

由于反电动势产生的感应电流会在变压器铁芯中产生反向磁场,使变压器铁芯退磁,磁场强度H开始由第一最大值Hm1逐步下降到0;但变压器铁芯中的磁通密度B并不是按充磁时的0-1磁化曲线原路返回,跟随磁场强度下降到零,而是按另一条新的磁化曲线1-2返回到2点;即:第一个剩余磁通密度Br1处。因此,人们都习惯地把磁通密度位于2点的值,称为剩余磁通密度,或简称“剩磁”。变压器铁芯有剩磁说明变压器铁芯有记忆特性,这是铁磁材料的基本特性。

——关于变压器初、次级线圈会同时产生反电动势对变压器铁芯进行退磁的概念,请参考第一章《1-5-1.单激式变压器开关电源的工作原理》部分的内容。

磁场强度H下降到零,但变压器铁芯中的磁通密度不能跟随磁场强度下降到零,而只能下降到某个磁通密度剩余值,这种现象称为变压器铁芯具有磁矫顽力,简称矫顽力,用Hc表示。变压器铁芯具有磁矫顽力,这是铁磁材料或磁性材料最基本的性质。

同理,当第二个直流脉冲加到变压器初级线圈a、b两端时,变压器铁芯中的磁通密度B将按图2-2中新的磁化曲线2-3上升,磁通密度被磁场强度磁化到第二个最大值Bm2,使磁通密度产生一个增量ΔB,ΔB = Bm2-Br1 。

第二个直流脉冲结束以后,流过变压器初级线圈中的励磁电流下降到零,变压器初、次级线圈产生的反电动势,又会使磁通密度按另一条新的退磁化曲线3-4返回到第二个剩余磁通密度Br2处;当然,Br2同样也只是变压器铁芯被退磁时磁通密度变化过程中的又一个临时剩余值。

其余依次类推,第3、4个直流脉冲电压同样也会让磁通密度增加一个增量ΔB ,即:

(2-9)式中,ΔB为磁通密度增量;只要作用于开关变压器线圈上的脉冲电压的幅度U和脉冲宽度τ不变,则变压器铁芯片的磁化过程就会在磁通密度增量为常数(∆B = 常数)的条件下进行。

但在直流脉冲的幅度和宽度不变的情况下,磁通密度的增量ΔB不改变,并不意味着磁场强度的增量可以保证不变,这是磁强度度与磁场强度之间的一个重要区别。
细节决定成败!
返回列表