首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

湿度传感器的选择条件

  随着时代的发展,科研、农业、暖通、纺织、机房、航空航天、电力等工业部门,越来越需要采用湿度传感器,对产品质量的要求越业越高,对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。湿度传感器产品及湿度测量属于90年代兴起的行业。如何使用好湿度传感器,如何判断湿度传感器的性能,这对一般用户来讲,仍是一件较为复杂的技术问题。

  一、湿度传感器的选择分类及感湿特点

  湿度传感器,分为电阻式和电容式两种,产品的基本形式都为在基片涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。

  国内外各厂家的湿度传感器产品水平不一,质量价格都相差较大,用户如何选择性能价格比最优的理想产品确有一定难度,需要在这方面作深入的了解。湿度传感器具有如下特点:

  1、精度和长期稳定性

  湿度传感器的精度应达到±2%~±5%RH,达不到这个水平很难作为计量器具使用,湿度传感器要达到±2%~±3%RH的精度是比较困难的,通常产品资料中给出的特性是在常温(20℃±10℃)和洁净的气体中测量的。在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,会产生老化,精度下降,湿度传感器的精度水平要结合其长期稳定性去判断,一般说来,长期稳定性和使用寿命是影响湿度传感器质量的头等问题,年漂移量控制在1%RH水平的产品很少,一般都在±2%左右,甚至更高。

  2、湿度传感器的温度系数

  湿敏元件除对环境湿度敏感外,对温度亦十分敏感,其温度系数一般在0.2~0.8%RH/℃范围内,而且有的湿敏元件在不同的相对湿度下,其温度系数又有差别。温漂非线性,这需要在电路上加温度补偿式。采用单片机软件补偿,或无温度补偿的湿度传感器是保证不了全温范围的精度的,湿度传感器温漂曲线的线性化直接影响到补偿的效果,非线性的温漂往往补偿不出较好的效果,只有采用硬件温度跟随性补偿才会获得真实的补偿效果。湿度传感器工作的温度范围也是重要参数。多数湿敏元件难以在40℃以上正常工作。

  3、湿度传感器的供电

  金属氧化物陶瓷,高分子聚合物和氯化锂等湿敏材料施加直流电压时,会导致性能变化,甚至失效,所以这类湿度传感器不能用直流电压或有直流成份的交流电压。必须是交流电供电。

  4、互换性

  目前,湿度传感器普遍存在着互换性差的现象,同一型号的传感器不能互换,严重影响了使用效果,给维修、调试增加了困难,有些厂家在这方面作出了种种努力,(但互换性仍很差)取得了较好效果。

  5、湿度校正

  校正湿度要比校正温度困难得多。温度标定往往用一根标准温度计作标准即可,而湿度的标定标准较难实现,干湿球温度计和一些常见的指针式湿度计是不能用来作标定的,精度无法保证,因其要求环境条件非常严格,一般情况,(最好在湿度环境适合的条件下)在缺乏完善的检定设备时,通常用简单的饱和盐溶液检定法,并测量其温度。

  二、对湿度传感器性能作初步判断的几种方法

  在湿度传感器实际标定困难的情况下,可以通过一些简便的方法进行湿度传感器性能判断与检查。

  1、一致性判定,同一类型,同一厂家的湿度传感器产品最好一次购买两支以上,越多越说明问题,放在一起通电比较检测输出值,在相对稳定的条件下,观察测试的一致性。若进一步检测,可在24h内间隔一段时间记录,一天内一般都有高、中、低3种湿度和温度情况,可以较全面地观察产品的一致性和稳定性,包括温度补偿特性。

  2、用嘴呵气或利用其它加湿手段对传感器加湿,观察其灵敏度、重复性、升湿脱湿性能,以及分辨率,产品的最高量程等。

  3、对产品作开盒和关盒两种情况的测试。比较是否一致,观察其热效应情况。

  4、对产品在高温状态和低温状态(根据说明书标准)进行测试,并恢复到正常状态下检测和实验前的记录作比较,考查产品的温度适应性,并观察产品的一致性情况。

  产品的性能最终要依据质检部门正规完备的检测手段。利用饱和盐溶液作标定,也可使用名牌产品作比对检测,产品还应进行长期使用过程中的长期标定才能较全面地判断湿度传感器的质量。

  三、对市场上湿度传感器产品的几点分析

  国内市场上出现了不少国内外湿度传感器产品,电容式湿敏元件较为多见,感湿材料种类主要为高分子聚合物,氯化锂和金属氧化物。

  电容式湿敏元件的优点在于响应速度快、体积小、线性度好、较稳定,国外有些产品还具备高温工作性能。但是达到上述性能的产品多为国外名牌,价格都较昂贵。市场上出售的一些电容式湿敏元件低价产品,往往达不到上述水平,线性度、一致性和重复性都不甚理想,30%RH以下,80%RH以上感湿段变形严重。有些产品采用单片机补偿修正,使湿度出现"阶跃"性的跳跃,使精度降低,出现一致性差、线性差的缺点。无论高档次或低档次的电容式湿敏元件,长期稳定性都不理想,多数长期使用漂移严重,湿敏电容容值变化为pF级,1%RH的变化不足0.5pF,容值的漂移改变往往引起几十RH%的误差,大多数电容式湿敏元件不具备40℃以上温度下工作的性能,往往失效和损坏。

  电容式湿敏元件抗腐蚀能力也较欠缺,往往对环境的洁净度要求较高,有的产品还存在光照失效、静电失效等现象,金属氧化物为陶瓷湿敏电阻,具有湿敏电容相同的优点,但尘埃环境下,陶瓷细孔被封堵元件就会失效,往往采用通电除尘的方法来处理,但效果不够理想,且在易燃易爆环境下不能使用,氧化铝感湿材料无法克服其表面结构"天然老化"的弱点,阻抗不稳定,金属氧物陶瓷湿敏电阻也同样存在长期稳定性差的弱点。

  氯化锂湿敏电阻,具有最突出的优点是长期稳定性极强,因此通过严格的工艺制作,制成的仪表和传感器产品可以达到较高的精度,稳定性强是产品具备良好的线性度、精密度及一致性,是长期使用寿命的可靠保证。氯化锂湿敏元件的长期稳定性其它感湿材料尚无法取代。
文章链接:中国农业仪器网
中国植保仪器网 www.zhibao17.com
本帖最后由 haozi521 于 2012-7-10 22:36 编辑

数字式温度传感器占空比输出式
  SMT16030在80年代末期由荷兰代尔夫特理工大学的实验室首先开发研制成功,并由新成立的荷兰Smartec公司对其进行市场化。它采用硅工艺生产的数字式温度传感器,其采用PTAT结构,这种半导体结构具有精确的,与温度相关的良好输出特性。PTAT的输出通过占空比比较器调制成数字信号,占空比与温度的关系如下式:DC=0.32+0.0047*t,t为摄氏度。输出数字信号故与微处理器MCU兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。该款温度传感器因其特殊工艺,分辨率优于0.005K。测量温度范围-45到130℃,故广泛被用于高精度场合。
MAX6575/76/77
  如果采用数字式接口的温度传感器,上述设计问题将得到简化。同样,当A/D和微处理器的I/O管脚短缺时,采用时间或频率输出的温度传感器也能解决上述测量问题。以MAX6575/76/77系列SOT-23封装的温度传感器为例,这类器件可通过单线和微处理器进行温度数据的传送,提供三种灵活的输出方式--频率、周期或定时,并具备±0.8℃的典型精度,一条线最多允许挂接8个传感器,150μA典型电源电流和2.7V到5.5V的宽电源电压范围及-45℃到+125℃的温度范围。它输出的方波信号具有正比于绝对温度的周期,采用6脚SOT-23封装,仅占很小的板面。该器件通过一条I/O与微处理器相连,利用微处理器内部的计数器测出周期后就可计算出温度。
其它
  DS1612是美国达拉斯半导体公司生产的CMOS数字式温度传感器。内含两个不挥发性存储器,可以在存储器中任意的设定上限和下限温度值进行恒温器的温度控制,由于这些存储器具有不挥发性,因此一次定入后,即使不用CPU也仍然可以独立使用。DS1612传感器温度测量原理和精度:在芯片上分别设置了一个振荡频率温度系数较大的振荡器(OSC1)和一个温度系数较小的振荡器(OSC2)。在温度较低时,由于OSC2的开门时间较短,因此温度测量计数器计数值(n)较小;而当温度较高时,由于OSC2的开门时间较长,其计数值(m)增大。如果在上述计数值基础上再加上一个同实际温度相差的校正数据,就可以构成一个高精度的数字温度传感器。该公司将这个校正值定入芯片中的不挥发存储器中,这样传感器输出的数字量就可以作为实际测量的温度数据,而不需要再进行校准。它可测量的温度范围为-55℃~+125℃,在0℃~+70℃范围内,测量精度为±0.5℃,输出的9位编码直接与温度相对应。DS1621同外部电路的控制信号和数据的通信是通过双向总线来实现的,由CPU生成串行时钟脉冲(SCL),SDA是双向数据线。通过地址引脚A0、A1、A2将8个不同的地址分配给各器件。通过设定寄存器来设置工作方式,并对工作状态进行监控。被测的温度数据被存储在温度传感器寄存器中,高温(TH)和低温(TL)阈值寄存器存储了恒温器输出(Tout)的阈值。现在,各种集成的温度传感器的功能越来越专业化。比如,MAXIM公司近期推出的MAX1619是一种增强型精密远端数字温度传感器,能够监测远端P-N结和其自身封装的温度。它具有双报警输出:ALERT和OVERT。ALERT用于指示各传感器的高/低温状态,OVERT信号等价于一个自动调温器,在远端温度传感器超上限时触发,MAX1619与MAX1617A完全软件兼容,非常适合于系统关断或风扇控制,甚至在系统“死锁”后仍能正常工作。美国达拉斯半导体公司的DS1615是有记录功能的温度传感器。器件中包含实时时钟、数字式温度传感器、非易失性存储器、控制逻辑电路以及串行接口电路。数字温度传感器的测量范围为-40℃~+85℃,精度为±2℃,读取9位时的分辨率是0.03125℃。时钟提供的时间从秒至年月,并对到2100年以前的闰年作了修正。电源电压为2.2V~5.5V,8脚SOIC封装。DS17775是数字式温度计及恒温控制器集成电路。其中包含数字温度传感器、A/D转换器、数字寄存器、恒温控制比较器以及两线串行接口电路。供电电压在3V至5V时的测量温度精度为±2℃,读取9位时的分辨率是0.5℃,读取13位时的分辨率是0.03125℃。
返回列表