首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

利用近红外光谱法实现非侵入式血糖监测 3

利用近红外光谱法实现非侵入式血糖监测 3

感应和预处理

将铟镓砷光电二极管信号送入放大器,以放大微弱的近红外光谱信号。红光、红外光和绿光信号的衰减不会造成影响,因此无需放大。我们可利用内部可编程增益放大器(PGA)来放大近红外光谱信号。从葡萄糖变化中记录几毫伏的电压变化,再利用1.024V参考电压和增益为50的可编程放大器对其进行放大。利用单个Δ∑模数转换器连同一个模拟多路转换器对感应信号进行采样。用18位分辨率采样近红外和绿光信号,用16位分辨率采样红光和红外信号,以便提高采样率,避免心率变化引起信号混淆(见图2)。




图2.PsoC的外部元件与原理图

可使用脉宽调制(PWM)来控制LED的发射功率。由于使用五个LED(2个近红外光、1个红外光、1个红光和1个绿光),因此需要五个8位PWM模块,而且占空比不同。近红外LED的传输波长会随直流电压平均值而改变。近红外LED运行于3个不同的占空比,以使光波波长在1550nm上下浮动。这样做是为了降低原始葡萄糖值之间的噪声。

心率引起的耳垂血液量变化如果得不到正确处理就会成为主要噪声源。为了消除心率变化的影响,在打开红光、红外和近红外LED后,应该在100毫秒内对衰减信号采样。对每个LED输出采集20个样本,共采集120个样本(三个近红外波长占60个,红外、红光和绿光波长各占20个)。环境光源也会产生大量噪声,并被光学传感器采集到。为了消除这种噪声,应该在打开LED之前存储几个样本。随后从实际信号中减去环境光测量值。所有样本都用32位整型变量存储,以应对乘法与加法溢出问题。
返回列表