首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

FFT实时谱分析系统的FPGA设计和实现

FFT实时谱分析系统的FPGA设计和实现

快速傅里叶变换(Fast Fourier Transformation, FFT) 实时谱分析是DSP应用的核心技术之一,而在高速实时信号处理中,常采用专门集成电路(ASIC)来实现。FPGA是一种具有大量的可编程逻辑单元的器件,它的应用使得电子产品不仅具有高速度、高集成度和高可靠性,而且具有用户可编程特性,能降低设计风险。实验表明,用FPGA实现的实时谱分析系统既有专用ASIC电路实现的快速性,又有DSP器件实现的灵活性,非常适用于高速实时的数字信号处理。

         1 FFT实时信号处理系统的总体设计

  FFT频谱分析系统主要由1024点基-4 FFT模块和接口控制电路组成。其中,基-4 FFT模块用于实现一组1024点复数数据的FFT变换;接口控制电路负责控制1024点基-4 FFT模块,并对A/D采样输出的数据进行缓存、速率匹配等,协调整个FFT频谱分析系统的工作时序。

  在本设计中,FFT实时谱分析系统的1024点基-4 FFT算法采用FPGA实现。FPGA的总体框图如图1所示。其中,衰减限幅模块负责对数据进行衰减及限幅压缩处理;双口RAM负责存储外部输入的原始数据及经过蝶形运算后的中间数据;四点FFT模块完成4点DFT运算;地址控制模块负责产生读地址、写地址、写使能信号以及相关模块的启动、控制信号,是FFT系统的控制核心;复乘运算模块是系统运算的核心部分,采用CORDIC算法实现;旋转因子产生器产生复乘运算中的旋转因子的角度数据;倒序模块实现频谱正常顺序输出。


         2 功能模块的设计

         2.1 衰减限幅模块

  FFT实时谱分析系统采用的算术运算方案是定点运算,衰减限幅模块实现了定比例衰减、尾数处理和压缩信号电平的作用,用以防止数据溢出。模块框图如图2所示,其压缩特性如图3所示。

       2.2 四点FFT模块

  四点FFT模块完成四点DFT变换,变换公式如下:
  

  四点FFT模块中完全不需要复数乘法,乘-j只需将实部虚部交换,再加上必要的正负号即可。四点FFT模块采用流水线工作方式,每四个时钟周期完成一组四点FFT运算。在输入一组四点原始数据x(i)时,要完成两项工作:①进行上一组四点FFT的第二级运算,即计算并输出上一组四点FFT的结果X(k);②进行本组四点FFT的第一级运算,即计算本组四点FFT的中间结果X′(k)。这样充分利用了硬件资源。

         2.3 复乘运算模块

  复乘运算是FFT处理器中两种最频繁的运算之一,因而复乘运算模块也是FFT处理器中的一个重要模块。输入复数数据xr+jxi与旋转因子cosα+jsinα相乘的公式为:


  利用CORDIC的圆周旋转的向量工作模式可以实现复乘运算,所采用的迭代方程组如下:


  所以,只需将需要运算的角度值作为z0输入,经过旋转迭代后,迭代结果的xn和yn就是所需要的旋转因子复乘的运算值。即:


  复乘运算模块的工作流程如图4所示。


  从复乘运算的算法流程中可以看到,实现复乘运算的主要元件有加法器、移位器和多选一数据选择器等。组成流水线后,各流水单元结构相似,很适合用FPGA实现。     2.4 旋转因子产生模块

  在一个基-4蝶形运算单元中,包含WP、W2P和W3P三个旋转因子,每组基-4蝶形运算的第一个输出数据所乘的旋转因子总为1。在同一个蝶形组内,p值是不变的,因而只需确定一个p值,三个旋转因子便可确定下来。每当一个基-4蝶形组计算完毕而转入下一个蝶形组时,p值改变一次,其变化的顺序恰好是(L-1)位四进制数顺序加1的倒序输出。由此可以根据蝶形运算的级数和四点FFT的节点位置计算出对应的旋转因子的角度。

  由于=cos()-jsin(),在程序中将小数cos()和-sin()转换成定点数,变换为二进制数进行计算。

  本设计的复乘运算采用CORDIC算法实现,需要输入角度值作为进行复乘运算的相应旋转因子的角度,因此旋转因子产生模块输出的数据即对应旋转因子的角度值,模块中包括10位计数器和一个计算输出进程。程序的运算流程如图5所示。

  本设计采用直接计算旋转因子的方法,不需要产生旋转因子的读取地址和额外的ROM资源,简化了设计,但需要一直进行角度值的计算,增加了系统的运算时间。

        3 FFT实时频谱分析系统的实现

  本设计采用Synplicity公司的逻辑综合软件Synplify7.1 pro进行设计综合,用Xilinx的ISE6.1布局布线。实现后的系统的时序分析结果表示,系统有9.139ns的延迟,系统时钟周期可达10.817ns,系统频率达到92.4MHz。当系统频率为90MHz时,1024点FFT运算需要的时间大约为68.3μs,完全可以满足实时处理的要求。本文采用Xilinx公司的Virtex-Ⅱxc2v500 fg456-5 FPGA器件实现系统,设计使用资源状况如表1所示。

  本FFT实时谱分析系统采用定点运算方案,输入为12位复数数据,输出为14位复数数据。采用方波信号进行测试,其参数为:脉冲幅度H=100,脉冲宽度M=10。本FFT实时谱分析系统输出的幅值如图6所示,输出的幅值的相对误差如图7所示。相对误差较大的一些点均出现在标准FFT输出的幅值很小的点上,这是由于有限字长效应引起相对误差造成的。同时由于采用的算术运算方案是定点运算,加剧了小信号的信噪比的恶化。但在实际应用中这些输出幅值很小的点会被判别为频谱上的噪声点,对实际的频谱分析影响不大,故对系统的误差影响并不大。而在标准FFT输出的幅值较大的点上,相对误差则很小。

  本设计全部由VHDL语言实现,采用自顶向下的设计方法,完成了一个1024点FFT实时谱分析系统。该FFT采用了基-4原位算法,既保证了运算速度,又节省了硬件资源。该FFT通过CORDIC算法实现复乘,较传统的复乘运算节省了大量的ROM资源,同时采用了流水线结构,加快了运算速度。

         参考文献

1 刘淩,胡永生. 数字信号处理的FPGA实现. 北京:清华大学出版社,2002
2 李广军,孟宪元. 可编程ASIC 设计及应用[M].成都:电子科技大学出版社,2000
3 刘朝晖, 韩月秋.用FPGA 实现FFT 的研究[J].北京:北京理工大学学报,1999;19(2):234~238
4 Volder J E.The CORDIC Trigonometric Computing Technique IRE.Trans.on Electronic Computer,1959(9)
记录学习中的点点滴滴,让每一天过的更加有意义!
返回列表