首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

高分辨率全帧CCD芯片FTF4027M的驱动电路设计

高分辨率全帧CCD芯片FTF4027M的驱动电路设计

本文所要设计的驱动电路是机载CCD相机上的前端驱动电路。机载CCD相机能够将拍摄的图像以数字的形式采集、存储和传输,并与地面实现实时通信,因此可以很好地克服传统光学相机的缺点。随着CCD器件的快速发展,CCD驱动时序的产生有很多种方法,比如可以采用数字集成电路、单片机、EPROM器件或可编程逻辑器件等来实现。本文采用CCD专用的数字集成芯片和单片机进行设计来实现CCD驱动电路。它的优点是结构设计简单、设计周期短、电路可靠性强。而高速时序脉冲产生芯片的运用又克服了单片机晶振频率低的限制,因此足以满足高速大面阵CCD的驱动时序要求。
1 系统总体结构
CCD驱动电路系统框图如图1所示,它以微控制器P89LPC932作为系统总的控制单元,在其控制下,SAA8103与TDA9991共同为CCD芯片FTF4027M提供所需的驱动脉冲和偏置电压,协调整个相机同步工作。CCD输出的信号是带有固定图像噪声和暗电流的模
拟信号,需要运用光学黑补偿箝位电路并通过相关双采样去除噪声干扰,然后进行可在控增益放大和模/数转换,这些工作由CCD专用的模拟处理芯片TDA9965来完成。输出的12位数字信号送给DSP以便进行进一步的数字图像处理。


2 FTF4027M的内部结构及驱动时序分析
FTF4027M是一款1100万像素(4008×2672)的超大分辨率全帧CCD图像传感器。其内部结构如图2所示。该款芯片在结构上分为三部分,中间最大的区域为光敏区,即光积分区域;上下两部分为两个输出寄存器,将光积分生成的电荷水平转移到四个角的输出放大器,输出放大器将光生电荷形成的电压信号放大并转移出CCD。该款芯片的最大特点是将光敏区生成的图像分成W、X、Y、Z四个对称的角限,每个象限的电荷可以以不同的方向转移,通过四个输出端同时输出,有效地增加了帧速率,单端输出的帧速率为2帧/秒,而四端同时输出就可以达到7.5帧/秒。在本应用中,单端输出就可以满足系统设计要求,因此采用单端输出方式,电荷转移方向如图中虚线所示,A1、A2、A3、A4为垂直驱动时钟信号,C1、C2、C3为水平移动时钟信号。


CCD的帧转移时序图如图3所示。SSC为系统内部基准时钟信号,用于校准整个CCD的时序;CR(Charge Reset)为CCD的电荷复位信号,相当于电子块门信号;Trig-in是CCD的外部触发信号,用于控制CCD光积分的起始和结束;VA-high是控制四相A时钟的高低电平转换的信号;TG是光敏区与输出寄存器之间的隔栅,TG信号的相位和频率与A1完全一致。整个帧时序分为三个阶段,这三个阶段是循环进行的。把空闲模式阶段定义为第一阶段,在CCD空闲模式下,A时钟信号全部保持低电平。空闲模式后,CCD开始进入第二阶段,即光积分阶段,A1继续保持低电平,A2、A3、A4上升为高电平。因为CCD中的每个像素都可以看作是由四个栅极(每个栅极上连接一相时钟信号)“覆盖”的,而且像素之间必须分离开,水平方向上可以通过沟道隔离像素。为了将像素与像素在垂直方向上隔离开,必须将四个栅极中的某一个栅极电压变为0。

继承事业,薪火相传
返回列表