首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

微功耗IC免除心率监护仪的后顾之忧

微功耗IC免除心率监护仪的后顾之忧

计便携式心率监护仪时的严格要求足以令任何人头疼不已。首先,心脏监护仪必须符合最高安全性、可靠性和精度标准。设计师还必须应对纽扣电池有限的电量。一方面,要满足市场对更多功能的需求,另一方面,又不能增大空间、功率或成本,令人头疼的问题接踵而来。  幸运的是,解决办法是存在的。运用多种最新微功耗、高精度IC芯片,可以设计出一款功能更加齐全的低功耗心率监护仪(HRM)。

  


  低功耗IC最重要的功能是延长HRM所用电池的寿命,HRM用于实时测量病人的心率,或者把心率记录下来供以后研究使用。便携式HRM需要依靠电池长时间工作,因此,需要功耗低。数十年以来,动态心电监护仪和其他便携式ECG系统一直采用低电压电池供电,以确保安全。心脏病病人或敏感设备最不需要的是突然涌现的“热”线电压。微功耗IC采用低电压和电流工作,因此能节省电池电量。
  HRM的模拟前端
  HRM的主要目的是计算心率和显示ECG波形,同时还应提供导联脱落检测功能。图1显示了HRM设计的框图。模拟前端利用下列器件构建:微功耗仪表放大器、运算放大器以及一个内置12位ADC、采样保持放大器和数字处理器的微型转换器。处理后的数据送往PC进行显示。
  微功耗仪表放大器构成出色的输入放大器, 其低功耗、小尺寸、整个频率范围内的高共模抑制比(CMMR)、轨到轨输入和输出等特性非常适合这种电池供电型应用。高性能微功耗仪表放大器可解决许多常见的人体皮肤电位(范围为0.2 mV至2 mV)测量难题。对于这种应用,最佳仪表放大器应当具有高CMMR以便抑制共模信号,例如手术室设备的线路噪声或高频EMI等。轨到轨输出特性提供宽动态范围,支持比典型仪表放大器更高的增益。此外,设计人员应当利用微功耗仪表放大器来实现自然RC滤波器;当放大器之前使用串联输入电阻时,该RC滤波器可以降低高频噪声。
  在主信号链中,微功耗仪表放大器后接一个积分器反馈网络,利用4.7 μF电容和100 kΩ电阻实现,用以设置高通滤波器的−3 dB截止频率。它抑制电极的半电池超电势可能产生的差分直流失调。微功耗运算放大器提供13倍的额外增益以便放大弱信号。一个有源二阶低通贝塞尔滤波器消除约50 Hz以上的信号。
  由于电路采用电池供电,因此将电路的基准电压连接到病人时,就能用作基准电压,从而提高共模抑制性能。这对于测量ECG信号很重要。注意,有些机器是从踩踏板获得电源,因此不使用隔离。
  基准电压
  本设计假设ECG信号范围为0.2 mV至2 mV。为防止信号被箝位并使ADC的动态范围最大(0 V至1.25 V),设计中增加0.625 V偏置。如图2所示,电阻分压器和缓冲器产生0.625 V基准电压,它也用于偏置ECG信号(见图1)。

  


  导联脱落检测
  如果电极接触不良,HRM应提供警示信号。当电极脱离病人时,这些电阻与微功耗仪表放大器输入端的两个20 MΩ电阻(见图1)一起使输入发生偏移。正常工作时,微功耗仪表放大器的输出是基准电压;如果一个电极脱落,输出将变为0 V。图3所示为导联脱落检测电路,微功耗仪表放大器的输出端连接到检测电路的输入端。

  


  事实上,导联脱落检测电路是一个比较器,迟滞利用一个放大器实现。用一个高增益比较器来确定输入电压是高于还是低于基准电压,并输出一个代表净差符号的电压。迟滞通过少量正反馈消除噪声导致的不稳定性。单电源供电时,需要偏移基准电压,使电路完全在第一象限工作。图4显示了实现方法。电阻分压器 (R2和R1)产生一个正基准电压,用以与输入电压进行比较。图4中给出了设计直流阈值所用的公式。

  


  


  正常工作时,微功耗仪表放大器的输出应是 ;如果导联脱落,比较器的输出将变为0 V。当比较器的输出上升到3.3 V时,微功耗仪表放大器的输出也是0 V。根据微控制器的中断模式不同,上升沿或高电平可以触发微控制器的中断。当导联再次接上时,比较器的输出降至0 V,下降沿或低电平可以触发中断。
  微型转换器中的信号处理
  图5显示了HRM的模拟输出。我们可以看到从220 V电力线耦合而来的50 Hz噪声。采集到的信号可以通过微型转换器中的数字陷波滤波器处理。为此,我们根据200 Hz的采样频率,设计了一个二阶FIR滤波器。陷波滤波器采用极点零点放置方法,用于抑制50 Hz干扰。

  


  MATLAB提供的FDATool工具(如图6所示)用于设计陷波滤波器。在极点零点图中,将两个零点处于±π/2相位。对于200 Hz采样速率,50 Hz成分将被消除。

  


  零点处于单位圆中—FIR的系数为整数—因此微型转换器的计算负担大为减轻。传递函数为:
  
  可以将该传递函数转换为可编程递归算法,
  
  其中:
  n表示当前值
  n-1表示前一时刻的值,依此类推。
  根据系数,C代码如图7所示。
  图8所示为数字陷波滤波器之后的ECG波形。50 Hz噪声已被消除。

  


  


  


  心率计算的精度
  根据“心脏监护仪、心率仪和警报系统”标准ANSI/AAMIEC13:2002,容许的心率仪最小范围应为30 bpm至200 bpm,容许的读数误差“不得大于输入速率的±10%或±5 bpm,以较大者为准。”
  该HRM设计利用Fluke MPS450多参数ECG仿真器以不同心率在HRM板的输入端产生ECG信号。微型转换器对电路板的输出进行采样并计算心率值,然后传输至PC显示出来。
  功耗
  HRM设计采用锂电池或纽扣电池供电,以便可以长时间用在便携应用中,例如运动监护。应保证模拟前端能够采用1.8 V到5 V的电压工作。
  采用3.3 V电源时,模拟前端板的功耗为300 µA,微型转换器的功耗为330 µA(使用1 MHz系统内部时钟)。HRM的总功耗为660 µA。假设纽扣电池容量为50 mA,则可确保工作约75小时—对便携式监护仪来说,这一续航时间已经非常了不起—这在很大程度上要归功于低功耗IC。
返回列表