首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

汽车前沿应用向FPGA敞开大门

汽车前沿应用向FPGA敞开大门

 控制系统,并期望借此与更强大的竞争对手抗衡。artnerDataquest预测,2007年全球汽车半导体市场规模将达到201亿美元,而这个数字到2010年更将增长到259亿美元。在这其中,FPGA目前占了约9,300万美元,且今后三年内有望增长到3.12亿美元。
车用FPGA主要集中在信息娱乐/后装市场,以及无线通信/车身电子应用。赛灵思和Altera等较大型的FPGA供应商们,已经将其战略重点放在了这些“引人注目的”应用领域。为了与他们竞争,Actel等小型FPGA供应商就必须另谋出路。
一条出路就是动力传动系统(powertrain),这一设计理念几十年未发生变化,而现在马上就将发生改变。随着混合动力汽车、电动汽车、燃料电池汽车、E85(编者注:指用85%的乙醇与
15%的汽油混合后得到的燃料)燃料汽车,以及改进的柴油引擎的推出,汽车制造商们急于开发能够胜任新型动力传动控制任务的电子系统。
  同时,汽车安全应用的市场敞开了大门,例如防撞系统、盲点检测和告警系统,以及倒车摄像头等。除了快速的上市时间和满足后期设计变化所需的灵活性,动力传动和安全系统的设计师们还要求电子器件具有高度的可靠性、小功耗,并且能适应苛刻的汽车环境。
传统的电子元器件无法很好地适用于这些应用场合。ASIC的NRE和认证成本太高、设计周期过长、灵活性欠缺,且风险较大。微控制器虽然灵活,但功耗相对较大,且不能满足诸如高级柴油引擎中的控制单元等设备的特殊响应时间要求。(这些闭环控制单元必须能够在逐周期的基础上实时地进行监控和调整燃料喷射。)
LD在这些市场中曾得到了一些应用,但其只能提供中等的逻辑密度,通常制造工艺比较陈旧,而且性能和I/O功能也相对有限。相反,基于SRAM的FPGA虽然具有很高的密度和丰富的性能,但容易产生固件错误。另外,基于SRAM的FPGA功耗也相对较大,会导致自身发热,这就限制了更大规模的器件在最高温度达100℃左右环境中的使用。
可以用来解释为何Actel公司要扩展其ProASIC3系列产品,并使其成为据称是业界首个通过AEC-Q100一级认证的FPGA。AEC-Q100是汽车电子协会(AEC)发布的针对车用IC的应力测试认证标准。
低功率、单芯片、基于闪存的器件能上电即行(LAPU),并且不会产生固件错误。它们功能丰富且具有灵活性,能够在汽车极限应用所要求的高温环境下工作(125℃的环境温度和135℃的结温)。
器件采用了英飞凌的高性能CMOS+Flash的130nm汽车器件工艺,氧化层比较厚,因此能在支持较高工作温度的同时减少漏电流。相对于SRAM或闪存/SRAM混合配置,纯闪存的配置不会产生固件错误,而且功耗特别低、产生的热量非常少。反过来,这些特性也使得该器件可以工作在极端温度环境下。
返回列表