首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

图像采集压缩SOC系统在FPGA中的实现

图像采集压缩SOC系统在FPGA中的实现

 图像采集和处理已经成为了现代工业控制中必不可少的环节。传统的方法一般采用的是图像采集卡加工控机来实现整个系统。但随着嵌入式技术的发展,芯片的性能大大增强,嵌入式系统在工业控制系统中普及。作为前端的图像采集系统此时就不适宜再以图像采集卡的形式出现,而应当以更加简捷,方便的接口与主系统相连。  本设计使用Alera的FPGA实现了整个图像采集系统。整个系统完成了图像的采集、压缩和传输。系统采用流行的工业总线CAN做为其传输总线,不仅接口简易,成本低,而且可靠性较高。
  系统描述
  本设计中图像采集系统预期的目标是每秒采集2~3幅30万像素(640×480)的图像,压缩后通过CAN总线进行传输。按照1:8的压缩比计算,压缩后每帧数据量大约为0.3Mb,CAN总线峰值传输速度是1Mb/s,因此这样的一个总体的设计方案是可行的。
  根据系统所实现的功能,决定整个系统要包括六大模块,分别是图像采集及存储接口、I2C主控制模块(对SAA7113H进行配置)、JPEG编码器、CAN总线控制器、Wishbone总线和中央控制模块。图1为系统的结构框图。

图1 系统结
构框图
  摄像头产生的原始模拟图像数据流首先通过SAA7113H转换为数字信号,并携带有一定的同步及控制信息,传入FPGA内部异步FIFO内。图像采集及存储接口从异步FIFO读取数据并分析,提取所需要的保存至外部SRAM中,当存满一帧数据时,便可以进行压缩了。当JPEG编码模块压缩好数据后,便等待CAN总线进行传输,最后直至整帧数据处理完毕。
  整个系统的实现大约是60~100万门左右,因此可以采用Altera CycloneII系列中器件的EP2C20,它拥有2万个LE,24万左右的存储单元和52个乘加单元。系统Fitter之后的结果如表1所示,占用了芯片63%的逻辑资源和12%存储资源。在这其中,JPEG编码模块以及JPEG模块与Wishbone总线的接口占用了绝大多数部分资源。可以看出,使用EP2C20实现本文所描述的系统还是非常富余的。
[img][/img]

图2 PCB调试样板
  图2为最后制成的样板,这块样板上还包括了一些便于调试和其他研发目的的额外部件,真正产品的PCB板将会更加小巧。
  视频信号采集及存储接口
  本设计采用Phillips的SAA7113H芯片做模拟视频信号的采集。它的功能非常强大,最多可同时采集4路CVBS格式的视频数据。它通过VPO口输出数据,并支持多种视频格式输出,同时在输出数据流中包含同步信息和场信息,接口比较简单。
  VPO的数据输出与27M时钟同步的,这与JPEG encoder采用30M内部系统时钟处于两个时钟域。因此,使用异步FIFO进行跨时钟域的数据传递。
  数据采集以后便是对其进行识别和存储。从SAA7113H传出数据的最小单位是一个扫描行,以0xFF 0x00 0x00为标识,并且在行首尾分别有SAV(start of active video)和EAV(end of active video)字段。SAV和EAV中含有该扫描行是否是有效行,属于第几场这样的信息。JPEG编码器需要的数据是一整幅图像,即一个场对。因此对采集的图像,需要使用帧解码(Frame Decoder)子模块处理原始数据流中的同步信息,垂直扫描消隐信号。
  本设计的存储器件使用了一块4Mb的SRAM,正好可以保存一副未经压缩的30万像素的图片。对SRAM存储和读取地址的产生应该完全采用不同的方式,在本设计中分别采用两个子模块分别负责这两项功能。Frame Decoder输出的数据在存入SRAM时是按照行的顺序逐个存入,而JPEG encoder在读取的时候则应该是按照对像素处理顺序——以8×8块的方式读出。整个读写由控制状态机(Read &Write Control)来进行统一控制。视频采集及存储接口的结构图如图3所示。

图3 视频采集及存储接口模块
  JPEG压缩模块
  JPEG压缩标准从1993年提出至今已有14年了,从各个方面来看都已经非常成熟,并且被广泛的使用于各个领域,这也正是本设计采用JPEG压缩模式的原因之一。JPEG压缩的过程包括了8×8 DCT(离散余弦变换)、Zig-Zag扫描、量化、游程编码和熵编码(使用Huffman编码)五个主要的过程。本设计中的JPEG压缩模块除了包括这五大部分之外还要有字节分包处理、字节码处理(主要是插入一些特殊的码字)、FIFO、wishbone总线接口和配置寄存器等一些功能模块来协调整个系统的运作。该模块的结构如图4所示。

图4 JPEG压缩模块结构图
  Huffman编码出来的数据是变长码,它包括了两部分,即码字本身和码字长度。在Byte Pack模块中,根据码字的长度对码字进行适当的移位,然后整理成8位长度,送入Byte Code Insetion模块。该模块根据码字的实际值进行判断,如果当前码字的值是FF,便在其后插入0x00,如果当前码字是本帧最后一个码字的话,便在其后插入0xFFD9(0xFFD9是JPEG图像标准中的结束标志)以标示该帧的完结。这样在接收端中就可以用0xFFD9对数据流中每一帧压缩的数据进行分割。最后处理好的字节流将送入FIFO中,以等待CAN总线空闲。
  另外,还有Control Regs模块,可以使用总控制器通过Wishbone Bus对其中的功能寄存器进行修改,进而操控整个JPEG编码的过程。这个操作必不可少,只有使JPEG编码具有可控性,才能协调采集、压缩、传输等环节的顺利进行。
返回列表