首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

射频电路设计

模拟器件公司高速变换器部产品系列总监Dave Robertson说,在产品规划和开发期间,射频电路设计师必须处理四类问题。他们必须考虑各种商业问题,如芯片尺寸、成品率和上市时间。他们必须考虑为产品打开最大的应用市场的互操作性标准。工程师们还必须考虑产品工作的频率域。要使用的频段可能是特许的,也可能是非特许的,不过,无论哪种情况,它都将受到国家机构和国际组织的监管。最后,设计师必须处理产品的物理层,因为他们必须在这一层解决许多非线性问题。
  在系统级上,无线产品设计师必须评估系统的整体功能和性能,其中包括数据吞吐量、信道干扰和功耗。评估结果有助于系统体系结构设计师确定各种设计元件的要求和规范,供电路级设计使用。电路设计师在晶体管级实现每个元件,并在理想情况下应能利用系统级规范作为测试基准,对照系统要求来验证元件性能。在物理实现级,设计师设计出每个射频元件的布局,并根据原始产品要求,把每个元件封装在一个或多个器件中。他们必须对包括器件和互连线寄生效应在内的布局进行验证,以确保最终的性能和可制造性。将射频器件集成到产品中的设计师必须有一种能在设计完成之前评估系统性能的方法。
  AWR(Applied Wave Research)公司总裁兼首席执行官James Spoto看到了某种挑战,因为所有这些设计领域或阶段均被孤立的 EDA 环境和数据库隔离开来,并且都使用不适用于吉赫频率的工具和模型。体系结构模型和实际电路性能之间的相关性很差。体系结构模型忽视射频电路的多种缺陷,如噪声、失真和阻抗不匹配,或与这些缺陷的近似性很差。
  AWR 公司的Analog Office设计套件旨在缓解这个问题。它侧重于射频收敛,并在跨越 IC 设计流(从系统级到电路级的设计和验证)的统一设计环境中提供一种互连线驱动的、具有射频意识的并行设计方法。它包括设计和原理图的输入,时间域和频率域的仿真和分析,物理布局(带有自动器件级布局布线以及集成式设计规则校验程序)基于求解程序的 3D 全场提取[使用 OEA 国际公司(www.oea.com)的技术],以及支持射频测量的整套波形显示和分析功能。
  Ansoft 公司用具有数据输入和可视化功能以及时间、频率和混合模式仿真的Ansoft Designer 来支持射频电路设计。在系统级仿真时,除了其射频与 DSP 元件库以外,Ansoft Designer支持编译型和解释型 C 和 C++ 用户自定义模型的联合仿真,以及Mathworks 公司的 Matlab 联合仿真。电路仿真求解包括为获得非线性噪声、瞬态、数字调制、非线性稳定性以及负载与信源拉升而进行的分析。它还具有适用于滤波器和传输线的设计综合功能。该产品包括一个布局与制造模块以及一个 3D 平面电磁仿真引擎。
  Eaglewave 公司的 Genesys套件包括原理图输入、若干仿真引擎、适用于一些模拟电路的综合功能,以及生产和定制功能。仿真引擎支持线性电路仿真、频谱域系统仿真、谐波平衡非线性仿真,以及多级平面 3D 电磁仿真。它还具有适用于传输线、运算放大器滤波器、LC 滤波器、直接 LC/分布式滤波器、锁相环、振荡器、微波分布式滤波器以及延迟均衡和阻抗匹配电路的综合功能。
  Neolinear 公司为射频电路设计师提供的是 NeoCircuit-RF。该工具具有适用于一系列射频元件的设计输入、仿真和综合功能。它利用 Cadence 公司的 Specctre RF 仿真程序和安捷伦公司的 ADS 仿真程序来交互地或自动地对各种定制的射频电路进行尺寸调整、偏置和验证。工程师可以利用内置的功能进行测量,或者通过开放式 API(应用编程接口)添加自己的专有测量方法。NeoCircuit-RF 能利用 LSF(www.platform.com)或 Grid Engine(www.gridengine.sunsource.net)在设计小组成员之间适当地管理可用的执行许可证,从而把综合工作分配给多台机器。
  许多射频设计平台都集成有安捷伦科技公司的 ADS(Advanced Design System)。ADS有好几个仿真引擎,其中包括交流、直流、S-参数和谐波平衡仿真引擎,以及电路包络仿真引擎和瞬态及会聚仿真引擎。据 Dataquest 公司说,安捷伦科技公司是射频电路设计市场的领头羊,这并不使人感到意外。
  在低达几兆赫的频率时,射频效应也可能会很显著,这取决于设计的尺寸大小。即使是几百兆赫的时钟频率也会有频率分量进入吉赫范围。基本时钟频率的这些高频谐波能很容易地从电路板或芯片辐射出去,从而在设计的其它部位造成噪声和干扰问题。目前,模拟电路设计师和数字电路设计师都看到“高频”在其设计中造成不希望有的后果,即信号污染、串扰、衬底耦合和寄生效应。业界使用“信号完整性”这个术语来描述数字电路设计中不希望有的射频效应。参考文献 1 介绍了多种有助于你避免其中一些问题的EDA 工具。寄生效应提取工具和时域仿真程序用在高频时描述连线工作状态的各种模型代替了理想的连线。虽然这些工具比不建立寄生效应模型要好,但只是对连线射频性质的一阶近似。更详细、更精确的电磁及卷积建模软件有助于解决设计中最重要而又最敏感的部分,但仿真花费时间更长,而且只在布局或封装设计的小区域内才切实可行。
  工程师们历来习惯在单独而又孤立的模块上设计射频电路。人们要求减小手机和 PDA 等消费电子产品的形状因子,从而出现了带射频电路的印制电路板设计。设计上的挑战取决于工作频率。在较低的频率时,你可以在电路板上安装分立的射频元件,再用阻抗可控的印制线和通孔把它们连接起来。在进行需要较高频率的设计时,设计师必须利用参数曲线以及预先计算的散射参数(即 S-参数)模型,才能用传输线和器件模型来设计所有物理元件。在缩小体积的需求驱使下,甚至出现了对这些预定义参数曲线的交互式修改。为了验证电路,你必须先使用一种 3D 电磁场求解程序来建立传输线模型。然后,你必须使用一个电路仿真程序来进行功能验证。具有吉比数据速率的高速器件的集成,已经抬高了高速电路设计和仿真的门槛,并且需要更精确的模型来描述这些器件内部的通信体系结构。
  数字电路设计师习惯于把逻辑功能封装成预先定义的元件,然后在印制电路板上把它们连接起来。工作频率很高的射频电路很少采用预先定义的元件;包括印制线、通孔和导电图形等在内的互连传输线构成功能电路。这种方法需要对射频电路行为更透彻的了解,而且严重依赖于电磁仿真程序和电路仿真程序。此外,射频电路噪声大且很敏感,需要进行物理隔离。
  高速电路设计和射频电路设计都涉及到建立互连传输线的精准模型。高速电路采用复杂的分立数字元件。射频电路包含了金属化层内的元件,从而取消了分立元件。在射频电路设计中,互连印制线建模复杂,需要使用 3D 电磁场求解程序。在射频-模拟窄带设计中,传输元件形状为电路提供无源元件,如电容、电感和短路。这些无源元件只在所需信号工作的狭窄频率范围内有用,而在其它频率下则具有不希望有的特性。因此,一个为“射频-模拟”设计的印刷电路板铜箔形状仅供一个频带相当窄的信号使用。虽然半导体厂商和 EDA 厂商都在努力开发精确的射频器件模型,使之能够被有效地仿真,但多数设计师仍然依赖于射频集成电路厂商提供的设计指南和参考设计。
  工程师们之所以使用高速串行 I/O,乃是因为它性能更高、成本更低,设计更简单。Xilinx 公司的 RocketPHY 收发器具有 10Gbps的数据速率,允许设计师使用比传统并行总线体系结构更快的串行连接。利用数吉比串行 I/O 技术进行设计,需要更加注意影响信号完整性的各种问题,如衰减、噪声和反射。因此,工程师们必须使用通常只有射频设计师使用的技术,对设计进行分析,因为分布寄生效应的确切特性对于系统的总体行为是至关重要的。工程师通常使用 S-参数来描述各种与传输线、封装和连接器有关的寄生效应特性。
  Synopsys 公司的 HSpice 仿真程序具有一整套丰富的分析功能、绝好的模型和对 S-参数模型的支持。Xilinx 公司的设计师在开发 RocketPHY 收发器期间,使用 HSpice 来描述该收发器的特性。
  除了与安捷伦科技公司等射频电路设计主要厂商的联盟以外,Mentor 公司还拥有一些印制电路板射频电路的设计与验证工具。Mentor 公司已对其芯核设计定义产品和芯核设计布局产品,即 Board Architect 和 Board Station,进行了改进,以便了解各种射频元件。你可以利用兼有ModelSim 和 ADMS 两种仿真引擎功能的System Vision对混合信号电路进行仿真。Mentor 公司更新了它的 ICX 和 HyperLynx 仿真程序,以处理更精确的传输线模型,如有损耗传输线和与频率有关的通孔。
  Cadence 公司的 PCB Design Expert 使工程师能在设计过程的各个阶段导入射频子电路的设计模块,与信号分析工具连接,并定义和约束关键的高速信号。
  数字IC、模拟IC和射频 IC的设计师面临的主要挑战是:找到一个合适的仿真环境,他们能够在这个环境里评估可能的解决方案,并验证所选用的方法。从历史上看,高频系统的设计师使用频域仿真技术来开发射频元件和微波元件,而模拟/混合信号系统的设计师则使用时域仿真技术来开发大规模集成电路,并独立从事各自的设计。模拟/混合信号系统工程师设计当今的许多射频/混合信号 IC,并使用时域仿真技术(Spice)来寻找电压增益,电压增益和阻抗的交流扫描,噪声电压,等等。不过,EDA 厂商们则利用频域仿真技术,开发了大多数针对高频应用的技术。关心频域数据的射频工程师们可以轻松地利用频域仿真工具来设计电路块。
  随着高度集成的大规模射频/混合信号 IC 的问世,高频系统和模拟/混合信号系统的设计师现在必须共用硅片。同时,设计小组正在利用多种半导体技术把高频元件、模拟元件和数字元件组合在高度集成的模块上,由此实现各种完整的系统。
  正是这种情形,使各种设计方法正在合并,使统一的射频/混合信号电路设计小组应运而生。从高频系统设计师的观点来看,设计的规模和复杂性正在提高,从而更加需要用时域仿真技术来补充他们熟悉的频域仿真技术。从模拟/混合信号电路设计师的角度来看,数据速率和信号频率正在提高,从而愈加需要用频域仿真技术补充他们熟悉的时域仿真技术。
  对于某一种既需要时域分析又需要频域分析的设计,有一种方法可以处理它的仿真问题,即把所有描述抽象为行为模型,这样你就可以减轻仿真器的计算负担,且保持合理的 CPU 运行时间。有了这些方法,射频和模拟电路块以及射频和模拟信号就可以线性化或简化为“基带”模型,这样就可以使仿真速度最快。Matlab 是一种普遍用来从体系结构上探索混合模式设计的工具。它和使用这种方法的其它工具都采用在结构和功能上通常接近于C或C++的专有描述语言。这些工具都使用数据流算法,而且通常均能实现比 HDL 仿真器速度更快的仿真。快速的全功能仿真器当然是可取的,而且在许多情况下也很有用,但很多资深的系统体系结构设计师抱怨说,这些仿真所提供的数据几乎没有他们还不知道的。
继承事业,薪火相传
返回列表