首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
MCU 单片机技术
» 设定相位同调RF量测系统:从 MIMO 到波束赋形
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
设定相位同调RF量测系统:从 MIMO 到波束赋形
发短消息
加为好友
我是MT
当前离线
UID
1023166
帖子
6651
精华
0
积分
3328
阅读权限
90
来自
燕山大学
在线时间
230 小时
注册时间
2013-12-19
最后登录
2016-1-5
论坛元老
UID
1023166
性别
男
来自
燕山大学
1
#
打印
字体大小:
t
T
我是MT
发表于 2014-11-8 18:52
|
只看该作者
设定相位同调RF量测系统:从 MIMO 到波束赋形
工程师
,
电磁波
,
技术
,
空间
,
通信
概览
自从传送出第一笔
无线电
波之后,工程师就持续发明新方法,以优化电磁微波讯号。RF 讯号已广泛用于多种应用,其中又以无线通信与 RADAR 的 2 项特殊应用正利用此常见技术。就本质而言,此 2 项应用的独到之处,即是利用电磁波的空间维度 (Spatial dimension)。直到今天,许多无线通信系统整合了多重输入/输出 (MIMO) 天线架构,以利用多重路径的讯号传播 (Propagation) 功能。此外,目前有多款 RADAR 系统均使用电磁波束控制 (Beam steering),以取代传统的机械控制传输讯号。这些应用均属于多通道相位同调 (Phase coherent) RF 量测系统的主要行进动力之一。 就本质而言,此 2 项应用的独到之处,即是利用电磁波的空间维度 (Spatial dimension)。直到今天,许多无线通信系统整合了多重输入/输出 (MIMO) 天线架构,以利用多重路径的讯号传播 (Propagation) 功能。此外,目前有多款 RADAR 系统均使用电磁波束控制 (Beam steering),以取代传统的机械控制传输讯号。这些应用均属于多通道相位同调 (Phase coherent) RF 量测系统的主要行进动力之一。
介绍
PXI
RF 仪器 (如
NI
PXIe-5663 6.6 GHz RF 向量讯号分析器与 NI PXIe-5673 6.6 GHz RF 向量讯号产生器) 的模块化架构使其可进行 MIMO 与波束赋形 (Beamforming) 应用所需的相位同调 (Phase coherent) RF 量测作业。图 1 表示常见的量测系统,为 1 组 PXI-1075 - 18 槽式机箱中安装 4 组同步化 RF 分析器,与 2 组同步化 RF 讯号产生器。
图 1. 常见的 PXI 相位同调 RF 量测系统
此篇技术文件将说明设定相位同调 RF 产生或撷取系统时,其所需的技术。此外,亦将针对多组 RF 分析器之间的相位延迟,逐步呈现校准作业,以达最佳效能。
1. 相位同调 RF 讯号产生
若要设定任何相位同调 RF 系统,则必须同步化装置的所有频率讯号。透过 NI PXIe-5673 - 6.6 RF 向量讯号产生器,即可直接进行升转换 (Upconversion),以将基频 (Baseband) 波形编译为 RF 讯号。图 2 即说明双信道 RF 向量讯号产生器的基本架构。请注意,在 2 个通道之间必须共享 2 组基频取样频率与局部震荡器。
图 2. 同步化 2 个 RF 产生通道
在图 2 中可发现 NI PXIe-5673 共包含 3 个模块,分别为:PXI-5652 连续波合成器 (Synthesizer)、PXIe-5450 任意波形产生器,与 PXIe-5611 - RF 调变器。由于这些模块可合并做为单信道的 RF 向量讯号产生器,因此亦可整合其他任意波形产生器 (AWG) 与 RF 升转换器 (Upconverter),用于多信道的讯号产生应用。在图 2 中,共有 1 组标准的 PXIe-5673 (由 3 个模块所构成) 整合 1 组 NI PXIe-5673 MIMO 扩充组合。而扩充组合共容纳了 1 组 AWG 与调变器,可建构第二个讯号产生信道。
2. 相位同调 RF 讯号撷取
除了 PXIe-5673 - RF 向量讯号产生器之外,PXIe-5663 - RF 向量讯号分析器亦可设定用于多通道应用。当设定多组 PXIe-5663 进行相位同调 RF 讯号撷取作业时,亦必须注意类似事项,以确实进行 LO 与基频/中频 (IF) 讯号的同步化。PXIe-5663 可利用讯号阶段 (Signal stage) 并降转换为 IF,亦可进行数字升转换为基频。与传统的 3 阶段式超外差 (Superheterodyne) 向量讯号分析器不同,此架构仅需于各个通道之间同步化单一局部震荡器 (Local oscillator,LO),因此为设定相位同调应用最简单的方法之一。若要同步化多组 PXI-5663 分析器,则必须于各组分析器之间分配共享的 IF 取样频率与 LO,以确保各个通道均是以相位同调的方式进行设定。图 3 则为双信道系统的范例。
图 3. 同步化双信道的 VSA 系统
在图 3 中可看到 PXIe-5663 - RF 向量讯号分析器是由 PXI-5652 连续波合成器、PXIe-5601 - RF 降转换器,与 PXIe-5622 - IF
示波器
所构成。当向量讯号分析器整合 PXIe-5663 MIMO 扩充组合时,随即新增了降转换器与示波器,以建构双信道的 RF 撷取系统。
若要了解多组 RF 向量讯号分析器的同步化方法,则必须先行深入了解 PXIe-5663 - RF 讯号分析器的详细程序图。在图 4 中可看到,即便仅使用单一 LO 将 RF 降转换为 IF,则各组分析器实际亦必须共享 3 组频率。
图 4. PXIe-5663 - RF 向量讯号分析器的详细程序图
如图 4 所示,各个 RF 通道之间必须共享 LO、
ADC
取样频率、数字降转换器 (DDC),与数值控制震荡器 (Numerically controlled oscillator,NCO)。如图 4 所见,即便各组示波器之间共享 10 MHz 频率,其实亦极为足够。当各组示波器之间仅共享 10 MHz 参考时,即可产生非相关的信道对信道相位抖动 (Phase jitter);而于 IF 产生的相位噪声强度,亦将由 RF 的 LO 相位噪声所覆盖。
3. 数字降转换的特性
在了解相位同调 RF 撷取系统的精确校准方式之前,必须先了解应如何于基频观察 RF 的讯号特性。此处以相同中心频率,且以回送 (Loopback) 模式设定的 VSG 与VSA 为例。如图 5 所示,具备精确分析器中心频率的降转换 RF 讯号,将依基频呈现为 DC 讯号。此外,由于基频讯号属于复杂波形,因此亦可将讯号的相位 (Θ) 分析而为时间函式。在图 5 中可发现,只要 RF 向量讯号产生器与分析器互为同相 (In-phase),则「Phase vs. time」波形将呈现稳定的相位偏移 (Phase offset)。
图 5. 了解基频讯号频率偏移所造成的影响
相对来说,只要 RF 音调 (Tone) 与分析器的中心频率产生小幅误差,随即可造成极大的差异。当降转换为基频时,偏音 (Offset tone) 所产生的基频 I (亦为 Q) 讯号即属于正弦波。此外,基频正弦波的频率即等于「输入音调与分析器中心频率之间的频率差异」。因此如图 6 所示,「Phase versus time」图将呈现线性关系。
图 6. 未校准系统中的 10 MHz 音调「Phase vs. Time」关系图
从图 6 可发现,相位于每个微秒 (Microsecond) 可提升将近 360 – 亦即所产生的音调与分析器的中心频率,可确实为 1 MHz 偏移。图 6 中亦可发现,2 组同步取样示波器之间保持着极小却稳定的相位差 (Phase difference)。此离散相位差是起因于 LO 供电至各组降转换器之间的连接线长度差异。如接下来所将看到的,只要针对其中 1 个 RF 通道调整 DDC 的开始相位 (Start phase),即可轻松进行校准。
如图 7 所示,要量测 2 组分析器之间相位偏移的精确方式之一,即是以 2 组分析器的中心频率产生单一音调。
图 7. 双通道 RF 分析器相位的校准测试设定
透过分配器 (Splitter) 与对应的连接线长度,即可量测各组分析器的「Phase versus time」。假设讯号产生器与分析器均集中为相同的 RF 频率,则可发现各组分析器的「Phase versus time」图甚为一致。图 8 即呈现此状态。
图 8. 各组同步取样的 ADC 均将具有相同的相位偏移
从图 8 可明显发现,共享相同 LO 与 IF 取样频率的 2 组分析器,将维持稳定的相位偏移。事实上,各组分析器之间的相位差 (图 8 中的 ∆Θ = 71.2°) 均可进行量测并补偿之。若要补偿各组分析器之间的相位差,则仅需于 DDC 中调整 NCO 的开始相位。若 NCO 所使用的 IF 中心频率,即用于产生最后基频 I 与 Q 讯号,则此 NCO 本质即为数字正弦波。在图 8 中可发现,以菊链 (Daisy-chained) 方式连接的 RF 分析器,可透过特定中心频率产生 71.2° 的载波相位差。在整合了第二组 LO 的连接线长度,与其所使用的中心频率之后,即可决定确切的相位偏移。若将 71.2° 相位延迟 (Phase delay) 套用至主要 DDC 的 NCO 上,则可轻松调整 2 个信道的基频讯号相位;如图 9 所示。
图 9. 校准过后的相位同调 RF 撷取通道「Phase vs. Time」
一旦校准各组分析器的 NCO 完毕,则 RF 分析器系统即可进行 2 个通道以上的相位同调 RF 撷取作业。事实上,多通道应用可同步化最多 4 组 PXIe-5663 - RF 向量讯号分析器。
结论
当 MIMO 与波束赋形技术正蓬勃发展时,亦对测试工程师带来新的挑战;而模块化的 RF 仪控功能更可提供高成本效益且精确的量测解决方案。而进一步来说,如 PXIe-5663 VSA 与 PXIe-5673 的 PXI 仪器,则可设定为最多 4x4 MIMO 与相位同调 RF 量测的应用。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议