首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
MCU 单片机技术
» 基于WinCE的嵌入式视频数据采集系统设计(1)
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于WinCE的嵌入式视频数据采集系统设计(1)
发短消息
加为好友
我是MT
当前离线
UID
1023166
帖子
6651
精华
0
积分
3328
阅读权限
90
来自
燕山大学
在线时间
230 小时
注册时间
2013-12-19
最后登录
2016-1-5
论坛元老
UID
1023166
性别
男
来自
燕山大学
1
#
打印
字体大小:
t
T
我是MT
发表于 2015-11-27 09:33
|
只看该作者
基于WinCE的嵌入式视频数据采集系统设计(1)
数据采集
,
微处理器
,
控制器
,
嵌入式
,
安保
随着
嵌入式
技术的不断发展,各种
嵌入式
微处理器和控制器不断出现,并广泛应用于工控、通信、 PDA、安保等领域。基于ARM920t内核的
嵌入式
微处理器S3C2440,以其良好的数据处理能力、低功耗、小体积、支持多种
嵌入式
操作系统(如 WinCE、Linux)、集成多种外设(如I2C控制器、LCD控制器等)等优点,广泛应用于手持设备等。WinCE操作系统具有内核可剪裁、实时性好、支持多种通信、模块化设计、具有丰富的API等特点,广泛用于
嵌入式
实时操作系统。这里提出的
嵌入式
图像数据采集系统是某“纳米技术与微系统”实验室开发的“
嵌入式
传感测控系统”中实现图像采集功能的子系统,该系统是以S3C2440为硬件核心,以WinCE为软件平台,能实时、连续地采集清晰的视频数据。
1 系统结构框图及视频数据采集原理
视频数据采集系统结构如图1所示。
从图1中可以看出。系统由
嵌入式
微处理器S3C2440、存储器(包括Nand Flash和SDRAM)、以太网接口、CMOS图像传感器0V9650、USB主/从口、SD卡、JTAG接口、电源与复位电路、LCD与触摸屏组成。其中,S3C2440为整个系统的硬件核心,负责采集来自图像传感器的数据,控制给各种外设等。Nand Flash存储器与SDRAM构成了系统的存储器,其中SDRAM具有掉电数据不保存的特点,只用作系统内存,用于运行主程序等,而Nand Flash则具有掉电保存数据的特点,用于存储操作系统内核,引导加载程序(Bootloader)、用户应用程序等。
CMOS图像传感器及其接口电路用于采集视频数据。LCD与触摸屏构成人机交互模块,起到数据交互的作用,相当于PC机的键盘和液晶。J- TAG接口用于系统硬件调试和下载Bootloader程序。USB主口不但可以用于外接U盘和移动硬盘等,还可外接带USB接口的鼠标。在触摸屏校正出现大的偏差无法校正时,用鼠标辅助校正。USB从口用于下载WinCE内核文件NK.bin。电源电路包括为微处理器与相关外设提供电压(如微处理器的 1.3 V内核电压、LCD的3.3 V背光电压),以及为摄像头供电。复位电路用于出现故障时系统重启。以太网接口用于扩展系统功能,在视频数据采集的基础上,通过以太网,可以编程实现视频数据的网络传输。
视频数据采集原理如下:应用程序通过文件系统的API调用摄像头驱动程序的流接口函数发送命令。驱动程序将接收到的命令转化为对外部设备的相应操作,实现对处理器的CAMIF单元和图像传感器设备的初始化、I/O控制和电源管理等操作。图像传感器接收由处理器的I2C总线发送的配置数据,正常工作之后将图像数据和VSYNC、HREF、PCLK 3个时钟信号发送到处理器的CAMIF单元中,2条DMA通道将采集到的图像数据通过系统总线保存到内存的帧缓冲区中,帧缓冲区的图像数据能够被流接口驱动函数读取。
2 摄像头接口及其电源电路
摄像头接口电路如图2所示。本系统选用130万像素的CMOS摄像头0V9650,通过串行摄像头控制总线(Serial Camera Control Bus,SCCB)接口实现对其控制。OV9650支持SXGA、VGA、QVGA、CIF等格式,8位数据输出格式,可以是 YUV/YCbCr(4:2:2)、GRB(4:2:2)和Raw RGB 3种。
OV9650内部主要包括1 300xl 028的图像传感器阵列、模拟信号处理器、ADC、DSP、数字视频端口、SCCB接口、定时信号发生器和输出格式器。数据输出位YO只在RAW RGB数据时用作LSB,而Y1只在RGB数据时用作MS,这里都不使用,而用到的主要引脚有:RESET为重置位,用于清空所有的寄存器并重置为默认的值,高电平有效:HREF为内部参考电压引脚,为器件提供参考电压:PWDN为关闭电源模式选择位,高电平有效,为0时是正常模式,为1时电源关闭模式;SIO_D为SCCB串行接口数据I/O,SIO_C为串行接口时钟输入引脚;Y[2:9]为数据输出位,共8位;VSYNC为垂直同步输出引脚:PCLK为像素时钟输出引脚,XCLKl为系统时钟输入引脚。
OV9650的核心供电电压为1.8 V.模拟输入的供电电压为2.45~2.8 V,I/O口的供电电压可以为2.5~3.3 V。本系统设计中,摄像头供电电路如图3所示。采用电源转换器ASlll7为摄像头提供1.8 V和2.8 V电压,其中2.8 V电压是通过可调压器件分压得到。
3 系统软件设计
系统的软件设计应当包括两部分:BSP的开发与应用程序的开发。本文分别从这两个方面简单论述,BSP的开发主要介绍Bootloader程序设计及OV9650驱动程序开发。
3.1 Bootloader的开发
BSP的开发一般包括3个方面的内容:Bootloader程序设计、OAL层及驱动程序开发。Bootloader是操作系统内核运行之前运行的一段小程序,用于初始化系统的硬件设备,如初始化MMU、屏蔽所有中断、初始化NandFlash等,建立系统的内存空间映射。从而将系统的软硬件环境带到一个已知的状态,为操作系统内核的最终调用准备正确的环境。最后Bootloader把操作系统内核映像加载到RAM中,并将系统的控制权传递于它,其作用类似于基于X86的PC中的BIOS。
本系统设计的Bootloader,采用Eboot+Nboot的形式,支持USB从机下载通信手段和Nand flash存储介质。NandFlash不支持xip,故必须有一个可执行的程序将烧写在其中的Eboot搬到SDRAM中。Nboot一般配合 Eboot一起使用。Eboot与Nboot同样为启动代码,但是Eboot的大小远超过4 KB,故不能直接将Eboot存放在block0中。Nboot的作用是初始化Flash等硬件,将Eboot搬到SDRAM运行。而Eboot则负责内存地址的映射以及其余设备的初始化、加载NK.bin内核文件等。Nboot与Eboot在其中的位置如图4所示。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议