关键字:智能手机 室内定位系统
多年来,采用行人航位推算(PDR)技术的室内定位系统受到了学术和商业领域的广泛关注。现有的各种传感器解决方案通常是使用加速度计来计算步数,并使用磁力计和/或陀螺仪来测量行走方向的变化。测量准确率在行进距离[1]的0.5%到10%之间。但所有这些方法都要求用户从始至终保持身体平衡,以确保移动感应设备的平稳,就如同行走的同时还要保持一块蛋糕的平衡一样,也就是所谓的“蛋糕步”。
但是智能手机的室内定位系统要能够让用户自由移动,且无论手机如何放置都能提供合理的结果。通过开发传感器算法来进行室内定位是极为复杂的,这在一定程度上是因为算法会受下列因素变化的影响,且随着环境的实时变化,系统还必须同时兼顾到这些因素。
地磁异常随处可见。定向的不确定性是造成定位出错的主要原因。尽管使用磁力计可以避免定向过程中出现的“航向漂移”问题,但智能手机通常在一天中[2]60%的时间里都会出现地磁异常。如图1所示,当平稳地拿着手机经过一根普通的电线杆时,可以看到,航向出现摆动,变得极不准确。而通过算法的精心设计,可以检测到这些异常并进行弥补,使定向更加精准(如图中蓝线所示)。
图1.当经过电磁干扰源(如电线杆)时,一个普通缺省设置的安卓手机的定向功能会变得很差(红线)。在向同一台手机植入并安装Sensor Platforms公司的FreeMotion Library后,定向功能变得精确(蓝线)。
Yaw (deg):航向偏移量(单位:度)
Time (sec):时间(单位:秒)
Galaxy SIII Walking Past Electrical Pole:Galaxy SIII经过电线杆时的航向偏移
智能手机中的消费级惯性传感器噪音大且不稳定。一些学术文章中将加速度计噪音达到1mg且陀螺仪偏置漂移达到每小时20度(与军工级传感器相比相距甚远)[3]的惯性测量单元(IMU)称为低质IMU。然而,即便智能手机中最好的传感器,也会产生比该值多一到两个数量级的噪音。因此,这种噪音累积会迅速导致严重的定位错误。在提高传感器硬件性能之前,需要引入一些算法来减少航位推算错误,例如运用PDR技术来计算步数。
不同的携带模式需要不同的算法。PDR技术能够通过检测步数来减少集成错误。然而,仅是用手在空中简单的摇晃手机也同样会产生类似于行走的运动。这一问题在以往已经得到解决,例如,对第一响应者来说,可以将传感器模块绑定在衣服或鞋子上的特定位置,这样就可以避免该问题并提供可靠的结果[4]。
然而,这一方案并不适用于智能手机平台。因为人们通常不会把手机放在鞋子里,当然也不会像拿蛋糕一样小心翼翼地携带手机,相反,在人们行走的过程中,手机可能会放置在任何地方:口袋里、耳边、钱包里或直接拿在手上。因此,无论手机放置在哪里,智能手机的PDR功能必须能够跟踪定位用户的位置。
|