首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 基于MEMS陀螺仪的汽车驾驶操作信号采集系统设计
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于MEMS陀螺仪的汽车驾驶操作信号采集系统设计
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2015-9-24 20:03
|
只看该作者
基于MEMS陀螺仪的汽车驾驶操作信号采集系统设计
光电开关
,
霍尔开关
,
汽车驾驶
,
陀螺仪
,
传感器
国内外现有的汽车模拟驾驶器和汽车驾驶考核系统中,对脚踏板(油门踏板、脚刹踏板、离合踏板)及手刹等操作机构的状态信号的提取,主要是通过安装角度传感器或通过机械装置将机构的旋转运动转换为线性运动,安装线性位移传感器来实现;档位的位置状态则通过在档位的不同位置分别安装行程开关组或非接触开关组(霍尔开关、光电开关)得到开关量信号,获取档位的位置信息。由于这些传感器成本较高、体积较大,且在一台车辆中采用多种传感器形式,检测装置规格不统一,给汽车驾驶状态检测系统的生产制造、安装、维修、保养带来了较大不便[1-2]。
近年来,微电子机械系统(MEMS)技术微机械惯性器件日渐成熟,惯性测量系统得到了迅猛发展[3]。惯性测量系统将微电子、精密机械、传感器技术相互融合,具有集成度更高、性价比更好、体积更小、功耗更低等特点,且由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,并有很高的性价比,在汽车上得到了广泛的应用[4-5]。陀螺仪和加速度计是姿态测量系统的重要组成单元,本文选择了ADIS16355传感器,该传感器集成了三轴加速度传感器和三轴陀螺仪传感器,具有体积小、功能强、功耗低等特性,完全满足汽车驾驶运动参数的数据采集要求。
1 测量系统的硬件设计
1.1 测量系统硬件组成
汽车驾驶模拟器姿态测量系统如图1所示,主要包括信号采集模块(陀螺仪及信号调理电路)、信号处理及传输模块(微控制器及通信电路)、电源模块三部分。
信号采集模块由MEMS陀螺仪传感器和信号调理电路组成,完成对油门、脚刹、离合、手刹、档位等车辆驾驶操作机构倾角变化的物理量转换,并完成传感器输出信号的可靠传输;信号处理及传输模块由DSP构成核心器件,实现在姿态和动态加速度变化的条件下,精确测量运动机构的倾角变化,完成信号的数字滤波、角速度变化量积分为角度变化量的运算、差分处理及串行输出等工作;供电电源采用汽车充电发电机和车载蓄电池,供电电压在9 V~30 V之间,系统设备使用的电源电压为5 V。
1.2 MEMS加速度传感器的选择
本文采用微机械(MEMS)ADIS16355陀螺仪进行动态角度测量。ADIS16355陀螺仪是一款多轴运动传感器,它高效地将三轴陀螺与三轴加速度计相结合,以测量所有六自由度。该传感器集成了AD公司微机械和混合信息处理技术,是一个高度集成的解决方案,提供校准后的数字惯性感应;一个SPI接口和简单输出注册结构形成了简单的系统接口和编程;单电源操作在4.75 V~5.25 V;2 000 g冲击承受力。与其他现成惯性传感器相比,ADI-
S16355精度提高了50倍,易于集成(23 mm×23 mm×23 mm Mod封装)。
1.3 差分测量方法
通过将两个姿态传感器探头分别设置在被测物体和该被测物体所处的运动载体上,两姿态传感器在初始状态姿态相同,其安装位置应尽量靠近,使两传感器近似处于一个刚体中。此时不论检测载体(汽车)是否运动,两个姿态传感器探头输出的检测信号大小相等,差模信号接近为零。当检测装置工作时,两个三轴姿态传感器同时提取被测物和载体相对地面的三维运动信号,两组信号通过微处理器的数据融合及处理,屏蔽共有的振动、转动惯量、姿态变化等共模信号,保留被测物体相对运动载体角度或锥角变化的差模信号,进而得到被测物体相对运动载体的姿态变化量。该方法避开了两参照系数据转换的繁琐数学计算,具有电路简单、信号采集处理速度快的特点[6]。如图2(a)所示,为传感器在油门踏板上的差分安装原理图。
2 软件设计
检测系统的软件包括数据采集和数据处理两部分,软件流程图如图3所示。按照安装动态倾角检测装置,通过两个模块同时提取被测物体和动态载体上四组三维检测信号(两组角速度信号和两组加速度信号)。这四组三维电压模拟量的采集信号经过模拟量数据处理模块,屏蔽共有的振动、转动惯量和姿态变化等共模信号,保留被测物体相对运动载体锥角变化的差模信号,该检测信号经DSP的运算处理,完成MEMS陀螺仪传感器输出的检测信号与对应角度量的转换,实现被测物相对载体倾角的测量。
3 实验
按照差分测量的要求,将静止模块粘贴于固定支架上,将运动模块固定于离合器、刹车和油门踏板上(两模块与刚性架构间均用减振胶和海绵做减振材料),安装时使两个模块X轴处于测量灵敏度最高的测量位置,如图2(b)所示为传感器在实车上的安装图。
在实车上进行实车实验,刻意让车体产生最大幅度的振动和姿态变化,采集踩下油门踏板(以油门踏板为例)然后放开踏板时的部分测试数据,分别利用加速度信息Xg1~Xg2、角速度信息X?棕1~X?棕2的数据进行综合考虑,相互修正,得到汽车姿态角的最优估计值。如图4为对加速度计和角速度陀螺X轴数据相互修正融合后的差模数据拟合曲线。可以看出,试验结果满足动感汽车驾驶操作倾角信号采集的精度要求,说明此测量系统的可行性。
图4为对油门踏板X轴数据修正融合后的差模数据拟合曲线。
本文研究设计了基于ADIS16355和DSP的汽车驾驶操作信号采集系统,基本思想是通过采集重力加速度和角速率信号,并对据进行处理,最后运用差分测量方法,实现了对汽车驾驶状态的实时准确测量。实验结果表明该测量系统能满足汽车驾驶操作信号采集的精度要求。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议