首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

用混合信号示波器探测模拟和数字信号

用混合信号示波器探测模拟和数字信号

关键字:混合信号示波器   模拟信号   数字信号   MSO   WaveScan  

数字设计的查错

下面的例子展示了可以用混合信号示波器实现的一些基本诊断方法。第一个案例中研究的电路是一个简单的D触发器,以时钟上升沿触发。数字线D0连接到触发器的数据输入端(D)。D1显示的是时钟,D2显示的是Q输出。与此同时,模拟通道C1、C3和C4分别连接到相同的点。这些波形显示在图4的左侧。Q输出(D2)的周期和宽度用参数P1和P2进行测量。示波器的时基被设为采集大约5000个时钟脉冲。



图4:使用D2周期的踪迹定位采集记录中的长周期。缩放最大周期可以方便地观察数字和模拟轨迹中的细节。


参数统计表明,周期的平均值为208ns,最大值是416ns,这意味着输出没有保持期望的周期。踪迹F1是周期测量的轨迹,显示在数字显示器下方的左上侧栅格中。这个轨迹显示了作为与源轨迹在时间上同步的函数的D2周期。光标标识了踪迹指示、并且周期值增加的点。所有轨迹都经过缩放处于最大Q输出周期的位置,缩放后的轨迹显示在显示器的右侧。

代表错误时钟触发的数据信号的长周期显示在右上栅格中的数字轨迹中。轨迹Z4中也显示了模拟轨迹C4的缩放结果。参数P3测量的是数据C1和时钟C3之间的建立时间。统计结果再次表明,最小建立时间要比标称值短20%。F2中的建立时间踪迹显示,这个缩短的建立时间是与扩展周期同步发生的。

这是发现此类问题的一种方法。另外一种方法是使用被称为WaveScan的示波器内置搜索工具,如图5所示。注意,大多数混合信号示波器都具有某种形式的搜索工具。



图5:使用WaveScan并通过在D2上搜索超过标称208ns的周期测量值来寻找异常点的设置。


搜索工具可以在很长的记录中搜索,寻找边沿、不稳定边沿、超短帧、串行数据图案、并行(总线)数据图案或测量数据。在本例中,我们搜索在D3上测得的超过250ns的周期。当满足这种条件时,它会停止采集,显示数字源轨迹,并对源轨迹进行缩放。异常情况用红色高亮显示,测量到的异常值显示在相邻的表中。一旦发现问题,模拟轨迹将被打开,以便观察引起问题的物理层问题,就像我们以前做的那样。

混合信号示波器可以让你观察多达16条数字轨迹,数量要比模拟通道多。在图6中,8条数字轨迹记录了两个级联的8位移位寄存器的工作过程,这些移位寄存器是伪随机二元序列发生器的核心电路。首先需要注意,轨迹标签是定制过的,用于反应电路中的功能。我们能够看到时钟和串行数据输入以及来自移位寄存器的A和B部分的Q6、Q7和Q8输出。我们可以看作是从左到右经过从串行输入轨迹开始的所有16级电路传播的“长-短”图案(从顶部数第二个)。

参数P1使用选通延时参数测量串行输入轨迹上从触发器开始到图案末端下降沿的时间。对Q6-A轨迹上的那个边沿做类似的测量。将参数公式用于P3计算这两个边沿之间的时间差,结果是515.3 μs。参数P4测量时钟周期。P5中的参数公式用于将时钟周期乘以6,以验证从串行输入到Q6-A的期望延时,如果是515.3 μs就是正确的操作。输出Q7-A和Q8-A表明增加了一个时钟周期的延时。通过类似的方式还可以验证所有16级电路的正确传播延时。



图6:验证一个双8位串行移位寄存器的正确传播延时。


混合信号示波器的数字轨迹功能可以用来采集来自I2C、SPI和其它低频串行标准的串行数据,如图7所示。这里的D0包含SPI数据,D1是SPI时钟信号。解码器将这些波形用作源轨迹,以便解码数据内容,并用蓝色轨迹覆盖层和随附表格显示出来。解码数据可以用ASCII、二进制或16进制显示。表格也列出了相对于触发器的数据包位置,以及每个解码出的字节的比特率。



图7:将数字轨迹用作SPI解码器的源。采用16进制格式的数据内容显示在蓝色覆盖层和随附表格中。


总结

混合信号示波器可以向用户提供比传统数字示波器更多的功能。用户可以同时观察多达16根数字信号线,并且可以与多达4个模拟波形保持同步。数字轨迹可以用光标或所选的测量参数进行测量。对数字线还可以应用分析功能和解码操作。

从功能角度看,混合信号示波器中的数字状态分析功能的建立比逻辑分析仪简单,不要求额外的平台空间。在同一台仪器中的模拟通道可以在遇到问题时用于详细的物理层分析。
返回列表