本文主要讨论测量50Hz交流暂态中功率因数的方法。电路应该是R-L类型。通过只获取电流波形,控制相对于电压波形的插入角在±10°公差范围内,就可能实现对功率因数的精确测量,并且不确定度很低。利用简单的数学表达式再加上电流峰值和均方根(RMS)值之间的关系即可计算出功率因数。
一些简单的操作指令
这种方法专门用于短路实验室,或需要在短路电流期间(如10个周期)计算功率因数之时。要注意的事项很少,比如在电流是对称的时候以及控制没有电流波形包络的时候测量RMS值。举例来说,发生器附近的短路次暂态;正弦波形状的电流等等。
让我们开始做测量:
通过在电压过零期间插入电路记录电流,记录时间为130ms;
得到电流峰值的绝对值;
得到电流的RMS值,比如90ms之后的值;测量一个完整周期内(20ms) 的RMS值;
计算峰值和RMS值的比值;
我们把这个比值称为Ikcr,将它插入下面这个公式:
再把这个称为cosφ的结果插入另外一个公式:
计算cosφ1和err φ之间的差值,结果就是功率因数值:
测量不确定度取决于与电流测量有关的不确定度。例如对于一个电流测量不确定度u为1.2%的系统来说, k=2功率因数时的扩展不确定度等于:
测量值从0.9到0.5时为±0.022
测量值从0.5到0.2时为±0.009
理论
这是RL电路的微分方程。如果v是具有下列方程的交流电压源:
那么方程[1]的解为:
其中:
φ是由arctg(Xl/R)确定的电路特征角:
γ是相对于电压波形的插入角;
τ是由L/R确定的电路的时间常数;
t是时间(自变量),可以从0变到+∞。
通过分析方程[2]发现有两个分量,第一个是周期性的,对称的,第二个是单向分量,具有依赖于L/R比和插入角γ的渐减指数行为。当γ=0时,这个单向分量具有最大值。 |