首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 基于无线射频和GPRS网络的林火监测数据采集电路设计
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于无线射频和GPRS网络的林火监测数据采集电路设计
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2015-7-16 21:55
|
只看该作者
基于无线射频和GPRS网络的林火监测数据采集电路设计
数据采集
,
解决方案
,
蓝牙技术
,
微处理器
,
应用程序
随着蓝牙技术的迅速发展,目前蓝牙芯片市场涌现出了许多优秀产品。CSR公司的BlueCore系列产品、Bmadcom的BCM系列产品和TI公司的CC2540系列产品都有广泛的应用。其中TI公司的CC2450和CSR公司的CSR1000芯片都非常适用于蓝牙4.0应用解决方案。
本文选用了TI公司的CC2450F128芯片作为蓝牙通信芯片,该芯片提供真正的单片低功耗蓝牙BLE解决方案,能够运行应用程序和BLE协议栈。CC2450F128芯片内部集成了高性能低功耗的8051微处理器核,片内提供来了128KB的Flash存储空间,对外支持UART和USB通信接口,所以非常适用于蓝牙4.0的应用解决方案。
1总体方案设计
该设计为基于蓝牙4.0的设备提供良好的通用方案,有助于研发特定应用的设备。系统总体架构如图1所示。在系统总体架构图中,主要包括两部分:支持蓝牙4.0的手持设备和蓝牙设备。其中支持蓝牙4.0的手持设备可以是诸如智能手机、平板电脑等;蓝牙设备则是本文提供的解决方案。支持蓝牙4.0的手持设备和蓝牙设备之间通过蓝牙4.0协议传输数据,可以为蓝牙耳机、手机防丢应用和无线拍照应用等提供数据方案。
图1 系统总体架构框图
从系统总体架构框图中不难看出,该设计方案支持一对多的通信连接,即每个支持蓝牙4.0的手持设备可以同时与多个蓝牙设备建立连接,对应用功能的扩展带了极大便利。
2详细设计与实现
该部分将对系统总体架构框图中的蓝牙设备给出解决方案。此处选用了TI公司的CC2450F128芯片作为蓝牙通信芯片,该芯片最大的特点是能够提供真正的单片低功耗蓝牙BLE解决方案,能够运行应用程序和BLE协议栈,使用起来简单高效。
2.1 CC2450F128外围电路设计
低功耗蓝牙芯片CC2450F128的外围电路原理图如图2所示。从图2中可以看出CC2450F128芯片一般需要两个时钟晶振,其最为核心的部分是天线的电路设计,需要根据实际的需要调整阻抗匹配。由于CC2450F128芯片使用的是8051微处理器核,所以其可以对外提供多个IO引脚以用于其他业务逻辑的实现。
图2 CC2450F128外围电路原理图
2.2通信协议扩展
该解决方案另一个重要的部分就是其通信协议的设计和扩展。通常需要按照蓝牙4.0的通信协议来扩展其配置,包括Setvice配置和Characteristic配置。
举例说明,可以先增加UUID为00001802-0000-1000-8000-00123456789b的Service,然后为该服务增加UUID为00002a06-0000-1000-8000-00123456789b的Characteristic.
通常需要根据应用的业务逻辑划分出多个功能大类,再对功能大类进行细分。每一个功能大类对应一个Service,每一个功能细分对应一个Characteristic.总体看来,每个应用可以包括多个Service,每个Service可以包括多个Characteristic.
3系统性能分析
本文提供的解决方案是为了解决基于蓝牙4.0的设备的通信问题,所以必须关注于影响其通信的几个关键因素:信号强度、设备发现时间、稳定性和误报率。
3. 1信号强度与距离的关系
信号强度是决定蓝牙4.0通信质量的最重要因素之一,为了明确实际的信号强度衰减情况,进行了深入的实际数据测量。信号强度与距离的关系的原始数据图如图3所示。在图3中,蓝色交叉点显示的是492组数据,从图3中可以看出信号强度总体走势较为明显,相同距离下的数据相对集中,部分数据有波动现象。
图3 信号强度与距离的关系的原始数据图
为了更好的分析图3中的数据,需要对数据进行处理。首先以距离为依据,对同一距离下的6项信号强度数据进行均值处理,然后对处理后的数据进行数据拟合,得到信号强度与距离的关系图。
信号强度与距离的关系图如图4所示。在图4中,红色交叉点表示对同一距离下的6项信号强度数据进行均值处理后的82组数据,蓝色线条表示对该82组数据进行拟合后的曲线。从图4中可以看出信号强度在1米以内迅速衰减,之后随着距离的增加逐渐缓慢衰减,并且衰减过程中呈现波动趋势。
图4 信号强度与距离的关系图
根据图4中信号强度与距离所呈现的规律,可以用于蓝牙测距方面的应用,在实现上需要考虑蓝牙信号强度本身的波动性因素,采用多次采样和历史数据校正等方式来合理处理数据,以获取可用的有效数据,提升系统本身的稳定性。
3.2设备发现时间与距离的关系
设备发现时间是评价蓝牙4.0通信质量的另一个最重要因素。在使用蓝牙设备时,通信之前的第一步工作就是扫描蓝牙设备,然而扫描过程中设备发现时间与距离存在极大的关联,为了明确该内在关系,进行了深入的实际数据测量。整理后的设备发现时间与距离的关系的统计数据如表1所示。
表1
从表1中不难看出,总体趋势是距离越近,设备发现时间越短;距离越远,设备发现时间越长。当距离超出10 m时,设备发现的时间非常长或者不能发现设备,所以在实际的应用上需要考虑系统的性能参数,选择合适的通信距离。
3.3稳定性与误报率
3.3.1设备发现压力测试
为了验证该解决方案的稳定性,在10 m内采用100个蓝牙设备做设备发现压力测试。进行了压力测试之后显示,使用100个蓝牙设备进行扫描发现,距离越近的设备发现的频率越高,距离越远的设备发现的频率越低。设备的整体发现率可达到近90%,10%的设备未被发现主要原因是距离近的设备信号较强,容易被发现,优先占用资源。
3.3.2设备连接测试
设备的连接测试与硬件设备和上层的软件设计有极大的关系。理论上设备连接数量不受限制,但受到实际的软硬件资源的约束以及应用场景的不同,设备连接数量也有极大的不同。此处我们的原型设备同时连接3台蓝牙设备时非常稳定,同时连接5台蓝牙设备时较稳定,连接更多蓝牙设备时将出现不能连接的状况。
3.3.3设备误报率测试
实际的应用中,将考虑蓝牙设备当前的连接状况问题。由于当距离超出10 m时,设备发现的时间非常长或者不能发现设备,此时应用中的逻辑通常认为该蓝牙设备已断开连接,所以进行了10 m误报率测试。该测试中首先将蓝牙设备连接,然后移动到不足距离10 m的位置上检查其提示连接已断开的状况。经过100测试发现其在10 m左右的位置上的误报率在15%左右,其将受到软件的逻辑的影响。
4结束语
本文从实际应用的角度出发,设计并实现了基于蓝牙4.0的设备通信方案。该方案提供了低功耗的蓝牙解决方案,能够支持多设备的同时通信。实际实验测试结果表明,通信距离对接受到的蓝牙设备的信号强度、设备发现时间和误报率都有较大影响。本文所提供的设计方案经过大量的数据的验证,可以较好的完成蓝牙4.0通信功能,提供了多设备发现和连接的能力,以及根据信号强度测距的应用方案。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议