首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

基于实用CFA的TIA

基于实用CFA的TIA

使用CF导致的零抵销寄生电容导致的极点

以上简要介绍了向CFA添加CF 产生的影响,从中可以看出,可以安全使用CF 来补偿输入电流源的寄生分流电容。

图3所示电路的闭环增益表示为等式6。为了厘清添加反馈电容对该电路的影响,可用ZF 取代等式6中的RF ,与推导等式9的方法相似,其中,ZF由等式8定义。电路如图5所示。



图5. 基于实用CFA的TIA(用CF 补偿寄生电容)



图5所示电路的闭环增益可通过等式12求得:

(12)

根据该等式,可以算出环路增益为

(13)

等式13中,因CF导致的零与等式10中的零相同,但CF导致的极点则从移到了

通过向 CF 添加C,可以移动极点位置,以匹配零的位置,从而抵销掉输入电流源的寄生电容C导致的极点。在等式13中,将CF 和C导致的极点频率设为因CF导致的零频率,则得到等式14:

(14)

等式14所示为计算CF的值的简单公式,该值可抵销图5所示TIA中的寄生电容C导致的环路增益中的极点。以这种方式将极点零完美抵销之后,环路增益会回归最初形式,含有主极点和高频极点,如等式11所示。至此,闭环增益可以表示为等式15。

(15)

在使用等式14时,遇到的主要困难是确定Ro,该值是可变的,而且CFA数据手册中未必提供其额定值。然而,只要环路增益图的斜率在通过0dB时合理接近20 dB/十倍频程,则极点-零抵销无需如此精确。等式14表明,CF 随 Ro 线性递减,因为随着 Ro 接近0,自举发生次数会增加,其中,C完全自举,所需 CF 等于0。等式14也可表示为一种匹配时间常数形式,如 RoC = RFCF。等式14的匹配时间常数形式与对VFA进行寄生求和节点电容补偿时获得的结果非常相似: RGCG = RFCFRFCF,其中  RG 为VFA增益电阻,CG 为 RG的交越电容,该电容一般为寄生求和节点电容。然而,获得这种优势是需要付出代价的。虽然添加CF 可使TIA变稳定,但同时也会在时在闭环增益中导致一个极点,如等式12和等式15所示。等式15所描述的闭环增益可以视为传递函数相乘的两个级联系统。第一个系统的传递函数为等式15中最左侧的因子,维度为欧姆。第二个系统的传递函数为等式15中最右侧的因子,无维度。

第二个系统的响应取决于环路增益,只要环路增益幅度在20 dB/十倍频程时跨过0 dB,就可以模拟为一个一阶传递函数。基本反馈理论表明,如果达到这一滚降条件,当环路增益幅度>>1时,第二个系统的闭环增益幅度约等于单位增益,当环路增益幅度<<1时,则跟随环路增益幅度。闭环增益中的3-dB点出现在环路增益幅度跨过0 dB时的频率(如果斜率略快于20 dB/十倍频程,则在接近0-dB交越点之处,闭环响应中会出现一些峰化)。因此,在一个稳定的放大器中,第二个系统可以近似模拟为一个一阶、低通滤波器,其单位增益处于通带中,且截止频率等于环路增益幅度跨过0 dB时的频率。第一个系统的传递函数为反馈因子的倒数,其响应为简单的一阶、低通响应,直流值为RF,转折频率为

凭直觉可以看出,CF 导致的额外极点是意义的,因为输出电压是流过反馈阻抗的电流形成的,而反馈阻抗随频率增加而下降。当CF 的电抗等于RF的值时,会形成极点。在使用反馈电容补偿、基于VFA的TIA中会发生相同的情况。不过可以略微扩大闭环带宽,其方法是从根据等式14计算的值开始,小心地减小CF ,移出极点频率,并缩减相位裕量,但这只能尝试着做。

        简介

电流反馈放大器(CFA)历来都不是跨阻放大器(TIA)的首选,因为它们具有较高的反相输入电流和反相输入电流噪声,可能比同等级电压反馈放大器(VFA)至少高出一个数量级。另外,许多系统设计师对CFA并不熟悉,因为不大愿意使用它们。然而,事实上,CFA使用起来非常简单,而且在要求高增益、低功耗、低噪声、宽带宽和高压摆率的应用中,其性能可能超过VFA。其主要优势之一是,一个理想CFA的环路增益独立于其闭环增益,为此,CFA可以实现出色的谐波失真和带宽性能,而不受其闭环增益的影响。
继承事业,薪火相传
返回列表