首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 高速电路设计中时序计算方法与应用实例
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
高速电路设计中时序计算方法与应用实例
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2015-5-5 19:40
|
只看该作者
高速电路设计中时序计算方法与应用实例
计算方法
,
分析仪
,
频谱仪
,
设计者
,
产品
1满足接收端芯片的建立,保持时间的必要性
在高速数字电路设计中,由于趋肤效应、临近干扰、电流高速变化等因素,设计者不能单纯地从数字电路的角度来审查自己的产品,而要把信号看作不稳定的模拟信号。采用频谱分析仪对信号分析,可以发现,信号的高频谱线主要来自于信号的变化沿而不是信号频率。例如一个1MHz的信号,虽然时钟周期为1微秒,但是如果其变化沿上升或下降时间为纳秒级,则在频谱仪上可以观察到频率高达数百兆赫兹的谱线。因此,电路设计者应该更加关注信号的边沿,因为边沿往往也就是信号频谱最高、最容易受到干扰的地方。
在同步设计中,数据的读取需要基于时钟采样,根据以上分析,为了得到稳定的数据,时钟的采样点应该远离数据的变化沿。
图1是利用时钟CLK的上升沿采样数据DATA的示例。DATA发生变化后,需要等待至少Setup时间(建立时间)才能被采样,而采样之后,至少Hold时间(保持时间)之内DATA不能发生变化。因此可以看出,器件的建立时间和保持时间的要求,正是为了保证时钟的采样点远离数据的变化沿。如果在芯片的输入端不能满足这些要求,那么芯片内部的逻辑将处于非稳态,功能出现异常。
图1 信号采样示例
图2 源同步系统拓扑图
2时序分析中的关键参数
为了进行时序分析,需要从datasheet(芯片手册)中提取以下关键参数:
●Freq:时钟频率,该参数取决于对芯片工作速率的要求。
●Tcycle:时钟周期,根据时钟频率Freq的倒数求得。Tcycle=1/Freq.
●Tco:时钟到数据输出的延时。上文提到,输入数据需要采用时钟采样,而输出数据同样也需要参考时钟,不过一般而言,相比时钟,输出的数据需要在芯片内延迟一段时间,这个时间就称为Tco.该参数取决于芯片制造工艺。
●Tsetup(min):最小输入建立时间要求。
●Thold(min):最小输入保持时间要求。
除以上五个参数外,时序分析中还需要如下经验参数:
●Vsig:信号传输速度。信号在电路上传输,传输速度约为6英寸/纳秒。
时序计算的目标是得到以下两个参数之间的关系:
●Tflight-data:数据信号在电路板上的走线延时。
●Tflight-clk:时钟信号在电路板上的走线延时。
以上参数是进行时序分析的关键参数,对于普通的时序分析已经足够。
3源同步系统的时序计算
源同步系统指数据和时钟是由同一个器件驱动发出的情况,下图是常见的源同步系统拓扑结构:
该系统的特点是,时钟和数据均由发送端器件发出,在接收端,利用接收到的时钟信号CLK采样输入数据信号DATA.
源同步系统的时序计算公式为:
TCO(max) + (Tflight-data - Tflight-clk)MAX + Tsetup(min) Thold(min) (式2)
时序计算的最终目标是获得Tflight-data - T flight-clk的允许区间,再基于该区间,通过Vsig参数,推算出时钟信号和数据信号的走线长度关系。
4 SPI4.2接口时序分析
SPI4.2(System Packet Interface Level4, Phase 2)接口是国际组织OIF制定的针对OC192(10Gbps)速率的接口。目前广泛应用在高速芯片上,作为物理层芯片和链路层芯片之间的接口。SPI4.2的接口定义如下:
SPI4.2接口信号按照收、发方向分为两组,如图3中,以T开头的发送信号组和以R开头的接收信号组。每组又分为两类,以发送信号组为例,有数据类和状态类,其中数据类包含TDCLK、TDAT[15:0],TCTL,状态类包含TSCLK,TSTAT[1:0].
图3 SPI4.2接口信号
其中,状态类信号是单端LVTTL信号,接收端利用TSCLK的上升沿对TSTAT[1:0]采样,方向为从物理层芯片发往链路层芯片;数据类信号是差分LVDS信号,接收端利用TDCLK的上升沿与下降沿对TDAT[15:0]和TCTL采样,即一个时钟周期进行两次采样,方向为从链路层芯片发往物理层芯片。
由于接收信号组与发送信号组的时序分析类似,因此本文仅对发送信号组进行时序分析。
在本设计中,采用Vitesee公司的VSC9128作为链路层芯片,VSC7323作为物理层芯片,以下参数分别从这两个芯片的Datasheet中提取出来。
●状态类信号的时序分析
对状态类信号,信号的流向是从物理层芯片发送到链路层芯片。
第一步,确定信号工作频率,对状态类信号,本设计设定其工作频率和时钟周期为:
Freq=78.125MHz;
Tcycle = 1/ Freq = 12.8ns;
第二步,从发送端,即物理层芯片手册提取以下参数:
-1ns < Tco < 2.5ns;
第三步,从接收端,即链路层芯片手册提取建立时间和保持时间的要求:
Tsetup(min) = 2ns;
Thold(min) = 0.5ns;
将以上数据代入式1和式2:
2.5ns + (Tflight-data - Tflight-clk)MAX + 2ns < 12.8ns
-1ns + (Tflight-data - Tflight-clk)MIN > 0.5ns 整理得到:
1.5ns < (Tflight-data - Tflight-clk) < 8.3ns
基于以上结论,同时考虑到Vsig = 6inch/ns,可以得到如下结论,当数据信号和时钟信号走线长度关系满足以下关系时,状态类信号的时序要求将得到满足:TSTAT信号走线长度比TSCLK长9英寸,但最多不能超过49.8英寸。
● 数据类信号的时序分析
对数据类信号,信号的流向是从链路层芯片发送到物理层芯片。
第一步,确定信号工作频率,对数据类信号,本设计设定其工作频率为:
Freq=414.72MHz;
与状态类信号不同的是,数据类信号是双边沿采样,即,一个时钟周期对应两次采样,因此采样周期为时钟周期的一半。采样周期计算方法为:
Tsample = 1/2*Tcycle = 1.2ns;
第二步,从发送端,即链路层芯片手册提取以下参数:
-0.28ns < Tco < 0.28ns;
第三步,从接收端,即物理层芯片资料可以提取如下需求:
Tsetup(min) = 0.17ns;
Thold(min) = 0.21ns;
将以上数据代入式1和式2,需特别注意的是,对数据类信号,由于是双边沿采样,应采用Tsample代替式1中的Tcycle:
0.28ns + (Tflight-data- Tflight-clk)MAX + 0.17ns < 1.2ns
-0.28ns + (Tflight-data- Tflight-clk)MIN> 0.21ns
整理得到:
0.49ns < (Tflight-data - Tflight-clk) < 0.75ns
基于以上结论,同时考虑到Vsig = 6inch/ns,可以得到如下结论,当数据信号和时钟信号走线长度关系满足以下关系时,数据类信号的时序要求将得到满足:TDAT、TCTL信号走线长度比TDCLK长2.94英寸,但最多不能超过4.5英寸。
5 结论
高速电路中的时序设计,虽然看似复杂,然而只要明晰其分析方法,问题可以迎刃而解。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议