1月出席DesignCon 2015时,我有机会听到一个由Efficient Power Conversion 公司CEO Alex Lidow主讲的有趣专题演讲,谈到以氮化镓(GaN)技术进行高功率开关组件(Switching Device)的研发。我也有幸遇到“电源完整性 --在电子系统测量、优化和故障排除电源相关参数(Power Integrity - Measuring, Optimizing, and Troubleshooting Power Related Parameters in Electronic Systems)”一书的作者Steve Sandler,他提出与测量这些设备的皮秒边沿(Picosecond Edge)速度相关联(可参看他文章索引的部分)。
由于这些新电源开关的快速开关速度与相关更高效率,因此我们希望看到他们能适用于开关模式电源和射频(RF)功率放大器。他们可广泛取代现有的金属氧化物半导体场效晶体管(MOSFET), 且具有较低的“On”电阻、更小的寄生电容、更小的尺寸与更快的速度。我已注意到采用这些装置的新产品,其他应用包括电信直流对直流(DC-DC)、无线 电源(Wireless Power)、激光雷达(LiDAR)和D型音频(Class D Audio)。很显然,任何半导体组件在几皮秒内切换,很可能会产生大量的电磁干扰(EMI)。为了评估这些GaN组件,Sandler安排我来测试一些评估板。一块我选择测试的是Efficient Power Conversion的半桥(Half-bridge )1MHz DC-DC降压转换器EPC9101(图1),请参考这块测试板上的其他信息,以及一些其他的参考部分。
GaN 功率开关的价值很明显,效率也比MOSFET来得好。虽然GaN技术已问世,但我只看到少部分数据谈论这些皮秒开关装置如何影响产品EMI的发生。底下我 列出了一些参考,以及在使用GaN组件时,会“扫大家兴”的部分,但我相信有更多研究需要去完成EMI会发生的后果,至于EMI工程师与顾问在未来几年也 将可望采用GaN组件。