首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

开关电源设计及过程概述

开关电源设计及过程概述

一、概论
  开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。
  电源有如人体的心脏,是所有电设备的动力。但电源却不像心脏那样形式单一。因为,标志电源特性的参数有功率、电源、频率、噪声及带载时参数的变化等等;在同一参数要求下,又有体积、重量、形态、效率、可靠性等指标,人可按此去"塑造"和完美电源,因此电源的形式是极多的。
  随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。
  一般电力要经过转换才能符合使用的需要。转换的例子有:交流转换成直流,高电压变成低电压,大功率中取小功率等等。
  开关电源的工作原理是:
  1.交流电源输入经整流滤波成直流;
  2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;
  3.开关变压器次级感应出高频电压,经整流滤波供给负载;
  4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
  开关电源设计全过程
  1 目的
  希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教。
  2 设计步骤:
  2.1 绘线路图、PCB Layout.
  2.2 变压器计算。
  2.3 零件选用。
  2.4 设计验证。
  3 设计流程介绍(以DA-14B33为例):
  3.1 线路图、PCB Layout请参考资识库中说明。
  3.2 变压器计算:
  变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍。
  3.2.1 决定变压器的材质及尺寸:
  依据变压器计算公式
  B(max) = 铁心饱合的磁通密度(Gauss)
  Lp = 一次侧电感值(uH)
  Ip = 一次侧峰值电流(A)
  Np = 一次侧(主线圈)圈数
  Ae = 铁心截面积(cm2)
  B(max)依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss,设计时应考虑零件误差,所以一般取3000~3500 Gauss之间,若所设计的power为Adapter(有外壳)则应取3000 Gauss左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae越高,所以可以做较大瓦数的Power.
  3.2.2 决定一次侧滤波电容:
  滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power,但相对价格亦较高。
  3.2.3 决定变压器线径及线数:
  当变压器决定後,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温昇记录为准。
  3.2.4 决定Duty cycle (工作周期):
  由以下公式可决定Duty cycle ,Duty cycle的设计一般以50%为基准,Duty cycle若超过50%易导致振荡的发生。
  NS = 二次侧圈数
  NP = 一次侧圈数
  Vo = 输出电压
  VD= 二极体顺向电压
  Vin(min) = 滤波电容上的谷点电压
  D =工作周期(Duty cycle)
  3.2.5 决定Ip值:
  Ip = 一次侧峰值电流
  Iav = 一次侧平均电流
  Pout = 输出瓦数 4.1.1.16 机构尺寸:
  设计阶段即应对机构尺寸验证,验证的项目包括 : PCB尺寸、零件限高、零件禁置区、螺丝孔位置及孔径、外壳孔寸…,若设计阶段无法验证,则必须在样品阶段验证。
  4.1.2 样品验证:
  样品制作完成後,除温昇记录、EMI测试外(是否需重新验证,视情况而定),每一台样品都应经过验证(包括电气及机构尺寸),此阶段的电气验证可以以ATE(Chroma)测试来完成,ATE测试必须与电气规格相符。
  4.1.3 QE验证:
  QE针对工程部所提供的样品做验证,工程部应提供以下交件及样品供QE验证。
  开关电源的优缺点
  1、功耗小,效率高。在开关电源电路中,晶体管V在激励信号的激励下,它交替地工作在导通-截止和截止-导通的开关状态,转换速度很快,频率一般为50kHz左右,在一些技术先进的国家,可以做到几百或者近1000kHz.这使得开关晶体管V的功耗很小,电源的效率可以大幅度地提高,其效率可达到80%.
  2、体积小,重量轻。从开关电源的原理框图可以清楚地看到这里没有采用笨重的工频变压器。由于调整管V上的耗散功率大幅度降低后,又省去了较大的散热片。由于这两方面原因,所以开关电源的体积小,重量轻。
  3、稳压范围宽。从开关电源的输出电压是由激励信号的占空比来调节的,输入信号电压的变化可以通过调频或调宽来进行补偿。这样,在工频电网电压变化较大时,它仍能够保证有较稳定的输出电压。所以开关电源的稳压范围很宽,稳压效果很好。此外,改变占空比的方法有脉宽调制型和频率调制型两种。开关电源不仅具有稳压范围宽的优点,而且实现稳压的方法也较多,设计人员可以根据实际应用的要求,灵活地选用各种类型的开关电源。
  滤波的效率大为提高,使滤波电容的容量和体积大为减少。开关电源的工作频率目前基本上是工作在50kHz,是线性稳压电源的1000倍,这使整流后的滤波效率几乎也提高了1000倍;即使采用半波整流后加电容滤波,效率也提高了500倍。在相同的纹波输出电压下,采用开关电源时,滤波电容的容量只是线性稳压电源中滤波电容的1/500~1/1000.电路形式灵活多样,有自激式和他激式,有调宽型和调频型,有单端式和双端式等等,设计者可以发挥各种类型电路的特长,设计出能满足不同应用场合的开关电源。
  开关稳压电源缺点:
  开关稳压电源的缺点是存在较为严重的开关干扰。开关稳压电源中,功率调整开关晶体管V工作在开关状态,它产生的交流电压和电流通过电路中的其他元器件产生尖峰干扰和谐振干扰,这些干扰如果不采取一定的措施进行抑制、消除和屏蔽,就会严重地影响整机的正常工作。此外由于开关稳压电源振荡器没有工频变压器的隔离,这些干扰就会串入工频电网,使附近的其他电子仪器、设备和家用电器受到严重干扰。
  目前,由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因而造价不能进一步降低,也影响到可靠性的进一步提高。所以在我国的电子仪器以及机电一体化仪器中,开关稳压电源还不能得到十分广泛的普及及使用。特别是对于无工频变压器开关稳压电源中的高压电解电容器、高反压大功率开关管、开关变压器的磁芯材料等器件,在我国还处于研究、开发阶段。
  在一些技术先进国家,开关稳压电源虽然有了一定的发展,但在实际应用中也还存在一些问题,不能十分令人满意。这暴露出开关稳压电源的又一个缺点,那就是电路结构复杂,故障率高,维修麻烦。对此,如果设计者和制造者不予以充分重视,则它将直接影响到开关稳压电源的推广应用。当今,开关稳压电源推广应用比较困难的主要原因就是它的制作技术难度大、维修麻烦和造价成本较高。
返回列表