首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

紧凑正六边形DGS低通滤波器设计

紧凑正六边形DGS低通滤波器设计

1  引言缺陷接地结构(Defected Ground Structure, DGS)是微波领域新近发展的热点之一,它由光子带隙结构(PBG)发展而来。DGS通过在接地板上刻蚀缺陷图案,改变接地板上屏蔽电流的分布,从而间接改变传输线的等效电感和等效电容,获得慢波特性和禁带特性。慢波特性可以让微波传输线结构更加紧凑,而禁带特性可以抑制谐波杂波等无用信号。该技术现已被应用于滤波器设计中,可使滤波器抑制谐波的能力更为突出。

本文中提出了一种正六边形的地面缺陷结构作为DGS基本单元。设计的这个DGS单元结构,其单元等效电路可由RLC并联谐振单元表示,通过改变地面缺陷单元的正六边形的面积和狭槽的宽度,可以很容易控制等效电感和电容。从而调整其频率响应特性。本文通过对六边形尺寸参数变化的研究,提出了对应的低通滤波器的等效电路,设计了一个基于五个正六边形DGS的滤波器,在ADS中对等效电路的仿真结果与HFSS中的仿真结果很吻合。

2  正六边形DGS低通滤波器2.1  DGS及其等效电路正六边形DGS单元结构如图1(a)所示。在微带线的下方接地板上蚀刻出2个对称的正六边形并由一狭槽连接。本文采用介电常数为3.2,厚度为0.787 mm的基板。其50Ω微带线长度d为1.88 mm,微带线两旁蚀刻区域形成的等效电感L和中间的狭槽形成的等效电容C组成LC并联的谐振电路的频率响应在特定频点上产生极点。其有耗等效电路是一个并联谐振RLC电路。如图1(b)所示,该RLC 电路由一个等效并联电容C,一个并联电感L 以及电阻R 构成[7, 8]。这些参数可以通过对该结构进行EM仿真及以下公式提取出来
        (1)
               (2)
  (3)
式中ω0是谐振角频率;ωc代表3 dB截止角频率;Z0指传输线的特征阻抗,这里Z0为50 Ω。


(a)正六边形的DGS单元

(b)等效电路
图1
对图1(a)的六边形DGS单元在HFSS中建模进行EM仿真,观察其谐振频率随着六边形的边长的变化情况。其中,蚀刻狭槽的长度为s=12 mm,宽度g= 0.2 mm保持不   变,而六边形的边长从1.0 mm到2.5 mm变化,从仿真的结果可以看出,由于DGS图形的中间狭槽长度宽度不变,等效电容基本不变,而其等效电感随正六边形的面积增大而增加[5]。由可得3 dB截止频率降低,LC谐振电路的谐振频率也相应的从6.32 GHz降低为4.43 GHz,如图2所示。


图2  正六边形边长对谐振频率的影响
2.2  低通滤波器设计如上面的分析可以看出,正六边形DGS结构可以用来设计低通滤波器或抑止其寄生的旁带。但是该结构也存在一些缺陷,如在高频范围内没有足够的抑止,且存在着截止特性缓慢的情况。因此,在单个DGS单元上加上一个H形的并联枝节来增加微带线和正六边形DGS单元之间的耦合电容。这样不仅可以最大限度地减小LPF的尺寸,而且能够提高LPF的阻带特性。图3(a)是带H形并联支节的DGS单元,(b)是其等效电路。


(a)H形支节的DGS单元

(b)等效电路
图3

其中,l1 = 2.5 mm,w = 1 mm,a1 = 1.2 mm,d = 1.88 mm。在其它尺寸不变的情况下,并联枝节的长度t1从4 mm到10 mm逐渐增加,由仿真结果可以看出,随着l的增加,等效电路的电容也随之增加,从而带外的抑止也随着提高。而在2.41 GHz的3 dB截止频率并没有平移,只是衰减变得更深。并联支节的长度t1为10 mm时相对于4 mm的带外抑止提高了差不多10 dB,如图4所示。


图4  H型开槽长度对谐振频率的影响

为了获得性能良好的频率响应特性,并提高其带外抑止,必须增加正六边形DGS单元的数目,在这里设计的低通滤波器采用五个正六边形DGS单元。其对称结构如图5(a)所示,对应的等效电路如图5(b)所示。


(a)具有五个DGS单元的LPF

(b)等效电路
图5

除了t3之外,其它的参数都通过对单个单元进行分析而得到。它们的尺寸分别为:w = 1 mm,g = 0.2 mm,a1= 1.15 mm,a2 = 1.05 mm,a3 = 0.95 mm,s1 = 11 mm,s2 = 7.5 mm,s3 = 4 mm,l1 = 2.5 mm,l2 = 7.5 mm,l3 = 12.5 mm,m2 = 5.1 mm,m3 = 10.1 mm,t1 = 11 mm,t2 = 7.5 mm。

图6是采用五个DGS单元的低通滤波器随着并联支节长度t3的变化的仿真结果。由于并联支节长度增加使得图5(b)所示的等效电容CS3也随着增加。这样使得带外抑止也随之增加,而且通带到带阻的衰减也变得更加陡峭。同时我们也注意到,其带内特性如插入损耗和回波损耗却都有所增加。因此在设计的过程之中必须兼顾通带和阻带这两方面的特性。


图6  LPF频率响应随t3从2mm到6mm变化的仿真结果的比较

通过EM仿真和等效电路的仿真可以得到优化后的低通滤波器特性,当t3= 3 mm时,其仿真结果如图7所示。


图7  LPF的电磁仿真与等效电路仿真结果比较

对应的其等效网络的参数为:C1 = 0.627 pF,C2 = 0.109 pF,C3 = 0.067 pF,L1 = 1.25 nH,L2 = 1.608 nH,L3 = 0.515 nH,R1 = 8.87 kΩ,R2 = 2.39 kΩ,R3 = 1.15 kΩ,CS1 = 1.238 pF,CS2 = 0.927 pF,CS3= 0.303 pF,LS1 = 1.01 nH,LS2 = 0.802 nH,LS3 = 1.128 nH。

为了验证这个等效电路的正确性,通过ADS对其等效电路进行了仿真。从仿真结果比较可以看出,两者吻合较好。对于低通滤波器的频率特性,对应的3 dB截止频率为4.42 GHz,在通带范围内其S11低于-21 dB。而在阻带,从5.5 GHz到10 GHz这个很宽的频带范围内可以得到低于-40 dB的带外抑止。使用H形并联枝节的DGS结构与普通的DGS结构相比在阻带内能获得更高的衰减和谐波抑止,同时实现陡峭的下降特性。

3  结论文章提出了一种基于正六边形的DGS单元的低通滤波器,并且通过加入H形的并联枝节来增加它的等效电容从而提高它的带外抑止。提出了该DGS低通滤波器的等效电路模型。通过对DGS单元的尺寸参数分析得到该低通滤波器的等效电路元件值。设计了一个基于五个正六边形DGS单元的低通滤波器。在HFSS中对其建模仿真的结果跟在ADS中对其等效电路进行仿真的结果进行比较基本一致。截止频率响应非常的陡峭,能够获得低于-21 dB的S11,3 dB的截止频率为4.42 GHz。且在5.5 GHz到10 GHz的宽频带范围内得到低于-40 dB的阻带抑止。
the king of nerds
返回列表