首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
DSP技术
» 判别模型、生成模型与朴素贝叶斯方法(1)
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
判别模型、生成模型与朴素贝叶斯方法(1)
发短消息
加为好友
yuyang911220
当前离线
UID
1029342
帖子
9914
精华
0
积分
4959
阅读权限
90
在线时间
286 小时
注册时间
2014-5-22
最后登录
2017-7-24
论坛元老
UID
1029342
性别
男
1
#
打印
字体大小:
t
T
yuyang911220
发表于 2016-7-11 10:00
|
只看该作者
判别模型、生成模型与朴素贝叶斯方法(1)
模型
,
模型
,
模型
来源:
http://www.cnblogs.com/jerrylead
1判别模型与生成模型上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率。形式化表示为
,在参数
确定的情况下,求解条件概率
。通俗的解释为在给定特征后预测结果出现的概率。
比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率。换一种思路,我们可以根据山羊的特征首先学习出一个山羊模型,然后根据绵羊的特征学习出一个绵羊模型。然后从这只羊中提取特征,放到山羊模型中看概率是多少,再放到绵羊模型中看概率是多少,哪个大就是哪个。形式化表示为求
(也包括
,y是模型结果,x是特征。
利用贝叶斯公式发现两个模型的统一性:
由于我们关注的是y的离散值结果中哪个概率大(比如山羊概率和绵羊概率哪个大),而并不是关心具体的概率,因此上式改写为:
其中
称为后验概率,
称为先验概率。
由
,因此有时称判别模型求的是条件概率,生成模型求的是联合概率。
常见的判别模型有线性回归、对数回归、线性判别分析、支持向量机、boosting、条件随机场、神经网络等。
常见的生产模型有隐马尔科夫模型、朴素贝叶斯模型、高斯混合模型、LDA、Restricted Boltzmann Machine等。
这篇博客较为详细地介绍了两个模型:
http://blog.sciencenet.cn/home.php?mod=space&uid=248173&do=blog&id=227964
2高斯判别分析(Gaussian discriminant analysis)1) 多值正态分布
多变量正态分布描述的是n维随机变量的分布情况,这里的
变成了向量,
也变成了矩阵
。写作
。假设有n个随机变量X1,X2,…,Xn。
的第i个分量是E(Xi),而
。
概率密度函数如下:
其中|
是
的行列式,
是协方差矩阵,而且是对称半正定的。
当
是二维的时候可以如下图表示:
其中
决定中心位置,
决定投影椭圆的朝向和大小。
如下图:
对应的
都不同。
2) 模型分析与应用
如果输入特征x是连续型随机变量,那么可以使用高斯判别分析模型来确定p(x|y)。
模型如下:
输出结果服从伯努利分布,在给定模型下特征符合多值高斯分布。通俗地讲,在山羊模型下,它的胡须长度,角大小,毛长度等连续型变量符合高斯分布,他们组成的特征向量符合多值高斯分布。
这样,可以给出概率密度函数:
最大似然估计如下:
注意这里的参数有两个
,表示在不同的结果模型下,特征均值不同,但我们假设协方差相同。反映在图上就是不同模型中心位置不同,但形状相同。这样就可以用直线来进行分隔判别。
求导后,得到参数估计公式:
是训练样本中结果y=1占有的比例。
是y=0的样本中特征均值。
是y=1的样本中特征均值。
是样本特征方差均值。
如前面所述,在图上表示为:
直线两边的y值不同,但协方差矩阵相同,因此形状相同。
不同,因此位置不同。
收藏
分享
评分
继承事业,薪火相传
回复
引用
订阅
TOP
发短消息
加为好友
yuchengze
当前离线
UID
1062083
帖子
5837
精华
0
积分
2921
阅读权限
70
在线时间
222 小时
注册时间
2016-6-30
最后登录
2018-9-9
金牌会员
UID
1062083
性别
男
2
#
yuchengze
发表于 2016-8-19 22:08
|
只看该作者
好资料,很贴近我的研究方向,感谢分享
回复
引用
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议