首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

20个常用模拟电路-2

20个常用模拟电路-2

五.共射极放大电路

1 三极管的结构,

三极管各极电流关系:Ie=Icn+Ibn=Ic+Ib Ic=Icn+Icbo≈βIb
Ib =Ibn-Icbo
特性曲线:

共发射极输入特性曲线 共发射极输出特性曲线
放大条件:发射结正偏(大于导通电压),集电极反向偏置
2 元器件的作用:UCC为直流电源(集电极电源),其作用是为整个电路提供能源,保证三极管发射结正向偏置,集电结反向偏置。Rb为基极偏置电阻,作用是为基极提供合适的偏置电流。Rc为集电极负载电阻,作用是将集电极电流的变化转换成电压的变化。晶体管V具有放大作用,是放大器的核心。必须保证管子工作在放大状态。电容C1C2称为隔直电容或耦合电容,作用是隔直流通交流,即保证信号正常流通的情况下,使交直流相互隔离互不影响。
电路的用途:将微弱的电信号不失真(或在许可范围内)地加以放大,把直流电能转化成交流电能。
电压放大倍数:电压增益用Au表示,定义为放大器输出信号电压有效值与输入信号电压有效值的比值,即Au=Uo/Ui。Uo与信号源开路电压Us之比称为考虑信号源内阻时的电压放大倍数,记作Aus,即Aus=Uo/Us。根据输入回路可得Ui=Usri/(rs+ri),因此二者关系为Aus=Au ri/(rs+ri)
输入输出的信号电压相位关系:输出电压与输入信号电压波形相同,相位相差180o,并且输出电压幅度比输入电压大。
交流和直流等效电路图:


3 静态工作点的计算:基极电流IBQ=UCC-UBE/Rb(UBE=0.6~0.8V取0.7VUBE=0.1~0.3V取0.2V)集电极电流ICQ=βIBQ,UCEQ=UCC-ICQRc。
电压放大倍数的计算:输入电压Ui=Ibrbe
输出电压Uo= --βIbR`L(R`L=RcRL/Rc+RL)
电压放大倍数Au=--βR`L/rbe=--βRCRL/rbe(RC+RL)
六.分压偏置式共射极放大电路

1元器件的作用:CE为旁通电容,交流短路R4。RB1RB2为基极偏置电阻,作用是为基极提供合适的偏置电流。
电路的用途:既有电压增益,也有电流增益,应用最广,常用作各种放大器的主放大级。
电压放大倍数:输入交流电压Ui=Ibrbe输出交流电压为Uo=--Ic(RC∥RL)=--βIb(RC∥RL)故得电压放大倍数Au=--β(RC∥RL)/rbe=-- βR`L/rbe式中R`L=RC∥RL rbe=rbbˊ+(1+β)26mV/IEQ
输入输出的信号电压相位关系: 输出电压与输入信号电压波形相同,相位相差180o,并且输出电压幅度比输入电压大。
交流和直流等效电路图:

2电流串联负反馈过程分析:负反馈对参数的影响:RE的负反馈使得输出随输入的变化受到抑制,导致Au减小,输入电阻增大。
3 静态工作点的计算:UB=RB2UCC/(RB1+RB2) ICQ≈IEQ=UB-UBEQ/REUCEQ=UCC-ICQ(RC+RE)
电压放大倍数的计算: Au=--β(RC∥RL)/rbe=-- βR`L/rbe 源电压放大倍数Aus=AuRi/(Rs+Ri)Ri=RB1∥RB2∥rbe
4 受控源等效电路分析:
发射极接电阻时的交流等效电路
电流放大倍数Ai 流过RL的电流Io和输入电流Ii分别为
Io=IcRc/Rc+RL=βIbRc/Rc+RLIi=Ib(RB+rbe)/RB式中RB=RB1∥RB2,由此可得Ai=Io/Ii=βRBRc/(RB+rbe)(RC+RL)若满足RB>>rbe,RL<<Rc,则Ai≈β
输入电阻Ri=Ui/Ii=RB∥rbe若RB>>rbe,则Ri≈rbe
输出电阻Ro=Uo/Io│Us=0=Rc
源电压放大倍数Aus,定义为输出电压Uo与信号源电压Us的比值,即Aus=AuRi/(Rs+Ri)若满足Ri>>Rs,则Aus≈Au
若旁路电容CE开路时的情况,旁路电容CE开路,发射极接有电阻RE,此时直流通路不变,静态点不变,Ui=Ibrbe+(1+β)IbRE,Uo仍为-βIbR`L,电压放大倍数将变为Au=Uo/Ui=-βR`L/rbe+(1+β)RE,对比知放大倍数减小了,因为RE的自动调节作用,使得输出随输入变化受到抑制,导致Au减小。当(1+β)RE>>rbe,则有Au≈-R`L/RE,与此同时,从b极看去的输入电阻R`L(不包括Rb1Rb2)变为R`L=Ui/Ib=rbe+(1+β)RE,即射极电阻RE折合到基极支路应扩大(1+β)倍,因此,放大器的输入电阻Ri=Rb1∥Rb2∥R`i,输入电阻明显增大了。


七.共集电极放大电路(射极跟随电路)

1 元器件的作用:R2为反馈电阻,能稳定静态工作点。
电路的用途,:常作为多级放大电路的输入电路的输入级、输出级、中间缓冲级,功率放大电路中,常作推挽输出级。
电压放大倍数:Uo=Ie(Re∥RL)=(1+β)IbR`e Ui=Ibrbe+Uo=Ibrbe+(1+β) IbR`e
Au=(1+β)R`e/[rbe+(1+β)R`e]
输入输出的信号电压相位关系:输出电压与输入电压同相。
交流和直流等效电路图:

电路的输入和输出阻抗特点:输入电阻高,输出电阻低。
2 电流串联负反馈过程分析:在输入电压Ui一定时,某种原因(如负载电阻变小)使输出电流Io增大,则反馈信号Uf增大,从而使运放的净输入信号Ud减小,使输出电压Uo减小,使Io减小,从而抑制了Io的增大。过程可表示为:
RL↓→Io↑→Uf↑→Ud↓→Uo↓→Io↓
电流负反馈放大具有恒流源的性质。
负反馈对电路参数的影响:提高放大倍数的稳定性,稳定输出电流,展宽通频带,减小非线性失真抑制干扰噪声,串联负反馈使输入电阻增大,电流负反馈使输出电阻增大。
3 静态工作点的计算:UB≈RB2UCC/RB1+RB2 ICQ≈IEQ=UB-UBEQ/REIBQ=ICQ/β,UCEQ=UCC-ICQRe
电压放大倍数的计算:
Uo=Ie(Re∥RL)=(1+β)IbR`e Ui=Ibrbe+Uo=Ibrbe+(1+β) IbR`e
Au=(1+β)R`e/[rbe+(1+β)R`e]
八.电路反馈框图

1反馈的概念:将放大电路输出量(电压或电流)的一部分或全部通过某些元件或网络(称为反馈网络),反向送回到输入回路,来影响原输入量(电压或电流)的过程称为反馈。
正负反馈及其判断方法:当输入量不变时,若输入量比没有反馈时变大了,即反馈信号加强了净输入信号,这种情况称为正反馈;反之,若输出量比没有反馈时变小了,即反馈信号削弱了净输入信号,这种情况称为负反馈。通常采用“瞬时极性法”判断。方法如下:首先创定输入信号为某一瞬时极性(一般设对地极性为正),然后再根据各级输入、输出之间的相位关系(对分立元件放大器有共射反相,共集、共基同相;对集成运放有,Uo与U-反相、与U+同相)依次推断其他有关各点瞬时输入信号作用所呈现的瞬时极性(用+或↑表示升高,-或↓表示降低);并确定从输出回路到输入回路的反馈信号的瞬时极性;最后判断反馈信号的作用是加强了还是削弱了净输入信号。使净输入信号加强的为正反馈,若是削弱则为负反馈。
电流反馈和电压反馈及其判断方法:若反馈是对输出电压采样则称为电压反馈,若反馈是对输出电流采样,则称为电流反馈。电压反馈的反馈信号与输出电压成正比,电流反馈的反馈信号与输出电流成正比。常用方法负载电阻短路法(亦称输出短路法)。方法是假设奖负载电阻RL短路,也就是使输出电压为零。此时若原来是电压反馈,则反馈信号一定随输出信号电压为零而消失;若电路中仍然有反馈存在,则原来的反馈是应该是电流反馈。
2 带负反馈电路的放大增益:净输入信号Xid=Xi-Xf, 开环增益为A=Xo/Xid,反馈系数为F=Xf/Xo。闭环增益Af=Xo/Xi 负反馈放大电路增益表达式为Af=A/1+AF
3负反馈对电路的放大增益,通频带,增益的稳定性,失真,输入和输出电阻的影响:提高闭环放大倍数的稳定性,提高(1+AF)倍。展宽通频带,上限fHf增加1+AmF倍,下限fLf减小1/1+AmF倍。减小非线性失真和抑制干扰、噪声。对输入电阻的影响:串联负反馈使输入电阻增大1+AF倍,并联负反馈使输入电阻减小1/1+AF倍;对输出电阻的影响:电压负反馈使输出电阻减小1/1+AF倍,电流负反馈使输出电阻增大1+AF倍。
九.二极管稳压电路

1 稳压二极管的特性曲线:









2 稳压二极管应用注意事项:稳压二极管工作在反向击穿状态,外接电源电压应保证管子反偏,其大小应不低于反向击穿电压。
3 稳压过程分析:当电流的增量ΔIz很大时(Izmin

十.串联稳压电源

1 串联稳压电源的组成框图:

2每个元器件的作用:R3R4R5组成采样电路,当输出电阻将基础代谢变化量的一部分送到比较放大器的基极,基极电压能反映输出电压的变化,称为取样电压。电阻R2和稳压管D2组成基准电路,这Q2发射极提供一个基准电压,R2为限流电阻,保证D2有一个合适的工作电流。三极管Q2和R1构成比较放大环节,Q2是比较放大管,R1既是Q2的集电极电阻,又是Q1的基极偏置电阻,比较放大管的作用是先放大输出电压的变化量,然后加到调整管的基极,控制调整管工作,可以提高控制的灵敏度和输出电压的稳定性。Q1是调整管,它与负载串联,所以称之为串联型线性稳压电路。调整管Q1受比较放大管的控制,工作在放大状态,集射间相当于一个可变电阻,用来抵消输出电压的变化。
稳压过程分析:当负载RL不变,电压Ui减小时,输出电压Uo有下降趋势,通过取样电阻的分压使比较放大管的基极电位UB2下降,而比较放大管的发射极电压不变(UE2=UD2),因此UBE2也下降,于是比较放大管导通能力减弱,UC2升高,调整管导通能力增强,调整D1集射之间的电阻RCE1减小,管压降UCE1下降,由于Uo=Ui-UCE1,所以使输出电压Uo上升,保证了Uo基本不变,上述稳压过程表示如下:
Ui↓→Uo↓(下降趋势)→UB2↓→UBE2↓→UC2↑(UB1↑)→UCE1↓→Uo↑
当输入电压减小时,稳压过程与上述过程相反
当输入电压Ui不变时,负载RL增大时,引起输出电压Uo有增长趋势,则电路产生下列调整过程:
RL↑→Uo↑(上升趋势)→UB2↑→UBE2↑→UC2↓(UB1↓)→UCE1↑→Uo↓
当负载减小时,稳压过程相反。
3 输出电压计算:UB2=Uo(R2+R`P)/(R1+R2+RP)
​Uo=UB2(R1+R2+RP)/R2+R`P=(UD2+UBE2)(R1+R2+RP)/(R2+R`P)式中UD2为稳压管和稳压值,UBE2这Q2发射结电压
当RP调到最上端时,输出电压为最小值Uomin=(UD2+UBE2)(R1+R2+RP)/(R2+RP)
当RP调到最下端时,输出电压为最大值Uomax=(UD2+UBE2)(R1+R2+RP)/R2=[1+(R1+RP)/R2](UD2+UBE2)
十一.差动放大电路

1 电路各元器件的作用:
电路的用途:抑制零点漂移,解决静态工作点相互影响。
电路的特点:对称,两个三极管完全相同,外接电阻也相同。
2电路的工作原理分析:差动电路完全对称,当电源波动或温度变化时,两管集电极电流将同时变化。两管的漂移信号在输出端互相抵消,使得输出端不出现零点漂移,从而抑制零漂。
如何放大差模信号而抑制共模信号:当差动放大器输入共模信号时,由于电路完全对称,两管的极电位变化相同,因而输出电压Uoc保持为零,这和静态时的输出结果完全一样。从而抑制共模信号。当差动放大器输入差模信号时,由于电路对称,其两管输出端电位Uc1和UC2的变化也是大小相等,极性相反。若某个管集电极电位升高ΔUc,则另一个管集电极电位必然降低ΔUc。差动放大器的差模电压放大倍等于组成该差动放大器的半边电路的电压放大倍数。
3 电路的单端输入和双端输入,单端输出和双端输出工作方式:


十二.场效应管放大电路

1 场效应管的分类,特点,结构,

场效应管是利用输入电压产生的电场效应来控制输出电流的,所以又称之为电压控制型器件。它工作时只有一种载流子(多数载流子)参与导电,故也叫单极型半导体三极管。它具有很高的输入电阻,能满足高内阻信号源对放大电路和要求,是较理想的前置级器件。它还具有热稳定性好,功耗低,噪声低,制造工艺简单,便于集成等特点。
转移特性和输出特性曲线:


2 场效应放大电路的特点:1)场效应管是一种电压控制器件,即通过UGS控制ID
2)场效应管输入端几乎没有电流,所以其直流输入电阻和交流输入电阻都非常高。
3)由于场效应管是利用多数载流子导电的,因此,与双极性三极管相比,具有噪声小,受幅射的影响小、热稳定性较好而且存在零温度系数点等特性。
4)由于场效应管的结构对称,有时漏极和源极可以互换使用,而各项指标基本上不受影响,因此应用时比较方便灵活。结型场效应管漏极和源极可以互换使用,但栅源电压不能接反;衬底单独引出的MOS管漏极和源极可以互换使用,NMOS管衬底连电路最低电位,PMOS管衬底连电路最高电位。MOS管在使用时,常把衬底和源极连在一起,这时漏极、源极不能互换。
5)场效应管的制造工艺简单,有利于大规模集成。
6)由于MOS场效应管的输入电阻可高达1015Ω,因此由外界静电感应所产生的电荷不易泄漏,而栅极上的SiO2绝缘层又很薄,这将在栅极上产生很高有电场强度,易引进绝缘层击穿而损坏管子。应在栅极加有二极管或稳压管保护电路。
7)场效应管的跨导很小,当组成放大电路时,在相同的负载电阻下,电压放大倍数比双极型三极管低。
3场效应放大电路的应用场合:MOS管与结型管相比开关特性更好。结型场效应管主要用途是在模拟电路中用做放大元件,既可作分立元件使用,也可制作成集成电路。
返回列表