Kalman滤波器的历史渊源We are like dwarfs on the shoulders of giants, by whose grace we see farther than they. Our study of the works of the ancients enables us to give fresh life to their finer ideas, and rescue them from time’s oblivion and man’s neglect.
—— Peter of Blois, late twelfth century
太喜欢第一句话了,“我们是巨人肩膀上的矮人,巨人们的优雅让我么看得更比他们更远”,谁说不是呢?
说起Kalman滤波器的历史,最早要追溯到17世纪,Roger Cotes开始研究最小均方问题。但由于缺少实际案例的支撑(那个时候哪来那么多雷达啊啥的这些信号啊),Cotes的研究让人看着显得很模糊,因此在估计理论的发展中影响很小。17世纪中叶,最小均方估计(Least squares Estimation)理论逐步完善,Tobias Mayer在1750年将其用于月球运动的估计,Leonard Euler在1749年、Pierre Laplace在1787分别用于木星和土星的运动估计。Roger Boscovich在1755用最小均方估计地球的大小。1777年,77岁的Daniel Bernoulli(大名鼎鼎的伯努利)发明了最大似然估计算法。递归的最小均方估计理论是由Karl Gauss建立在1809年(好吧,他声称在1795年就完成了),当时还有Adrien Legendre在1805年完成了这项工作,Robert Adrain在1808年完成的,至于到底谁是Boss,矮子们就别管了吧!
在1880年,丹麦的天文学家Thorvald Nicolai Thiele在之前最小均方估计的基础上开发了一个递归算法,与Kalman滤波非常相似。在某些标量的情况下,Thiele的滤波器与Kalman滤波器时等价的,Thiele提出了估计过程噪声和测量噪声中方差的方法(过程噪声和测量噪声是Kalman滤波器中关键的概念)。
上面提到的这么多研究估计理论的先驱,大多是天文学家而非数学家。现在,大部分的理论贡献都源自于实际的工程。“There is nothing so practical as a good theory”,应该就是“实践是检验真理的唯一标准”之类吧。
现在,我们的控制论大Wiener终于出场了,还有那个叫Kolmogorov(柯尔莫戈洛夫)的神人。在19世纪40年代,Wiener设计了Wiener滤波器,然而,Wiener滤波器不是在状态空间进行的(这个学过Wiener滤波的就知道,它是直接从观测空间z(n)=s(n)+w(n)进行的滤波),Wiener是稳态过程,它假设测量是通过过去无限多个值估计得到的。Wiener滤波器比Kalman滤波器具有更高的自然统计特性。这些也限制其只是更接近理想的模型,要直接用于实际工程中需要足够的先验知识(要预知协方差矩阵),美国NASA曾花费多年的时间研究维纳理论,但依然没有在空间导航中看到维纳理论的实际应用。
在1950末期,大部分工作开始对维纳滤波器中协方差的先验知识通过状态空间模型进行描述。通过状态空间表述后的算法就和今天看到的Kalman滤波已经极其相似了。Johns Hopkins大学首先将这个算法用在了导弹跟踪中,那时在RAND公司工作的Peter Swerling将它用在了卫星轨道估计,Swerling实际上已经推导出了(1959年发表的)无噪声系统动力学的Kalman滤波器,在他的应用中,他还考虑了使用非线性系统动力学和和测量方程。可以这样说,Swerling和发明Kalman滤波器是失之交臂,一线之隔。在kalman滤波器闻名于世之后,他还写信到AIAA Journal声讨要获得Kalman滤波器发明的荣誉(然而这时已经给滤波器命名Kalman了)。总结其失之交臂的原因,主要是Swerling没有直接在论文中提出Kalman滤波器的理论,而只是在实践中应用。
Rudolph Kalman在1960年发现了离散时间系统的Kalman滤波器,这就是我们在今天各种教材上都能看到的,1961年Kalman和Bucy又推导了连续时间的Kalman滤波器。Ruslan Stratonovich也在1960年也从最大似然估计的角度推导出了Kalman滤波器方程。
目前,卡尔曼滤波已经有很多不同的实现。卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton开发的平方根滤波器的变种。也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。
从牛顿到卡尔曼从现在开始,就要进行Kalman滤波器探讨之旅了,我们先回到高一,从物理中小车的匀加速直线运动开始。
话说,有一辆质量为m的小车,受恒定的力F,沿着r方向做匀加速直线运动。已知小车在t-ΔT时刻的位移是s(t-1),此时的速度为v(t-1)。求:t时刻的位移是s(t),速度为v(t)?
由牛顿第二定律,求得加速度:
那么就有下面的位移和速度关系:
如果将上面的表达式用矩阵写在一起,就变成下面这样:
卡尔曼滤波器是建立在动态过程之上,由于物理量(位移,速度)的不可突变特性,这样就可以通过t-1时刻估计(预测)t时刻的状态,其状态空间模型为:
对比一下(1)(2)式,长得及其相似有木有:
匀加速直线运动过程就是卡尔曼滤波中状态空间模型的一个典型应用。下面我们重点关注(2)式,鉴于研究的计算机信号都是离散的,将(2)是表示成离散形式为:
其中各个量之间的含义是:
- x(n)是状态向量,包含了观测的目标(如:位移、速度)
- u(n)是驱动输入向量,如上面的运动过程是通过受力驱动产生加速度,所以u(n)和受力有关
- A是状态转移矩阵,其隐含指示了“n-1时刻的状态会影响到n时刻的状态(这似乎和马尔可夫过程有些类似)”
- B是控制输入矩阵,其隐含指示了“n时刻给的驱动如何影响n时刻的状态”
从运动的角度,很容易理解:小车当前n时刻的位移和速度一部分来自于n-1时刻的惯性作用,这通过Ax(n)来度量,另一部分来自于现在n时刻小车新增加的外部受力,通过Bu(n)来度量。
- w(n)是过程噪声,w(n)~N(0,Q)的高斯分布,过程噪声是使用卡尔曼滤波器时一个重要的量,后面会进行分析。
计算n时刻的位移,还有一种方法:拿一把长的卷尺(嗯,如果小车跑了很长时间,估计这把卷尺就难买到了),从起点一拉,直接就出来了,设测量值为z(n)。计算速度呢?速度传感器往那一用就出来了。
然而,初中物理就告诉我们,“尺子是量不准的,物体的物理真实值无法获得”,测量存在误差,我们暂且将这个误差记为v(n)。这种通过直接测量的方式获得所需物理量的值构成观测空间:
z(n)就是测量结果,H(n)是观测矢量,x(n)就是要求的物理量(位移、速度),v(n)~N(0,R)为测量噪声,同状态空间方程中的过程噪声一样,这也是一个后面要讨论的量。大部分情况下,如果物理量能直接通过传感器测量,。
现在就有了两种方法(如上图)可以得到n时刻的位移和速度:一种就是通过(3)式的状态空间递推计算(Prediction),另一种就是通过(4)式直接拿尺子和传感器测量(Measurement)。致命的是没一个是精确无误的,就像上图看到的一样,分别都存在0均值高斯分布的误差w(n)和v(n)。
那么,我最终的结果是取尺子量出来的好呢,还是根据我们伟大的牛顿第二定律推导出来的好呢?抑或两者都不是! |